
Firmware Version V1.31

TMCLTM FIRMWARE MANUAL

TMCM-6110

6 Axes Stepper Controller / Driver 1.1A RMS / 24V DC USB, CAN, RS485 [or RS232]

TRINAMIC Motion Control GmbH & Co. KG Hamburg, Germany

www.trinamic.com

Table of Contents

1		es				
2						
3	Putting	g the Module into Operation	6			
	3.1 Ba	asic Set-up	6			
	3.1.1	Connecting the Module	6			
	3.1.2	Start the TMCL-IDE Software Development Environment	11			
	3.1.3	Using TMCL Direct Mode	12			
	3.1.4	Important Motor Settings	13			
	3.1.5	TMCL Program Example	14			
4	TMCL a	and TMCL-IDE	15			
	4.1 Bi	nary Command Format	15			
		eply Format	16			
	4.2.1	Status Codes	16			
	4.3 St	andalone Applications	16			
	4.4 TN	MCL Command Overview	17			
	4.4.1	TMCL Commands	17			
	4.4.2	Commands Listed According to Subject Area				
	4.5 Th	ne ASCII Interface				
	4.5.1	Command Line Format				
	4.5.2	Format of a Reply				
	4.5.3	Commands Used in ASCII Mode	22			
	4.5.4	Configuring the ASCII Interface	23			
	4.6 Co	ommands				
	4.6.1	ROR (rotate right)	24			
	4.6.2	ROL (rotate left)	25			
	4.6.3	MST (motor stop)	26			
	4.6.4	MVP (move to position)	27			
	4.6.5	SAP (set axis parameter)	29			
	4.6.6	GAP (get axis parameter)	30			
	4.6.7	STAP (store axis parameter)				
	4.6.8	RSAP (restore axis parameter)	32			
	4.6.9	SGP (set global parameter)	33			
	4.6.10	GGP (get global parameter)	34			
	4.6.11	STGP (store global parameter)				
	4.6.12	RSGP (restore global parameter)	36			
	4.6.13	RFS (reference search)	37			
	4.6.14	SIO (set input / output)	38			
	4.6.15	GIO (get input /output)	41			
	4.6.16	CALC (calculate)	44			
	4.6.17	COMP (compare)	45			
	4.6.18	JC (jump conditional)	46			
	4.6.19	JA (jump always)	47			
	4.6.20	CSUB (call subroutine)	48			
	4.6.21	RSUB (return from subroutine)	49			
	4.6.22	WAIT (wait for an event to occur)	50			
	4.6.23	STOP (stop TMCL program execution)	51			
	4.6.24					
	4.6.25	GCO (get coordinate)	53			
	4.6.26	CCO (capture coordinate)	54			
	4.6.27	ACO (accu to coordinate)				
	4.6.28	CALCX (calculate using the X register)	56			
	4.6.29	AAP (accumulator to axis parameter)				
	4.6.30	AGP (accumulator to global parameter)				
	4.6.31	CLE (clear error flags)				
		VECT (set interrupt vector)				
		EI (enable interrupt)				
		DI (disable interrupt)				

4.6	5.35 RETI (return from interrupt)	66
4.6	6.36 Customer Specific TMCL Command Extension (user function)	67
4.6	5.37 Request Target Position Reached Event	
4.6	6.38 BIN (return to binary mode)	69
4.6	5.39 TMCL Control Functions	
5 Ax	is Parameters	71
5.1	stallGuard2 Related Parameters	78
5.2	coolStep Related Parameters	80
5.3	Reference Search	
5.3	3.1 Reference Search Modes (Axis Parameter 193)	83
5.4	Grouping Motors	86
5.5	Calculation: Velocity and Acceleration vs. Microstep- and Fullstep-Frequency	
5.5	5.1 Microstep Frequency	
5.5	5.2 Fullstep Frequency	
6 Gl	obal Parameters	
6.1	Bank 0	89
6.2	Bank 1	92
6.3	Bank 2	
6.4	Bank 3	93
7 TM	1CL Programming Techniques and Structure	94
7.1	Initialization	
7.2	Main Loop	94
7.3	Using Symbolic Constants	94
7.4	Using Variables	95
7.5	Using Subroutines	95
7.6	Mixing Direct Mode and Standalone Mode	95
8 Lif	e Support Policy	97
9 Re	vision History	98
9.1	Firmware Revision	
9.2	Document Revision	
10 Re	ferences	99

1 Features

The TMCM-6110 is a compact 6-axes stepper motor controller/driver standalone board. It supports up to 6 bipolar stepper motors with up to 1.1A RMS coil current. There are separate motor and reference/end switch connectors for each motor. In addition, the module offers 8 general purpose inputs and 8 general purpose outputs.

MAIN CHARACTERISTICS

Motion controller

- Motion profile calculation in real-time
- On the fly alteration of motor parameters (e.g. position, velocity, acceleration)
- High performance microcontroller for overall system control and serial communication protocol handling

Bipolar stepper motor driver

- Up to 256 microsteps per full step
- High-efficient operation, low power dissipation
- Dynamic current control
- Integrated protection
- stallGuard2™ feature for stall detection
- coolStep™ feature for reduced power consumption and heat dissipation

Interfaces

- Up to 8 multi-purpose inputs (+24V compatible, incl. 2 dedicated analog inputs)
- Up to 8 multi-purpose outputs (open-drain, incl. 2 outputs for currents up to 1A)
- RS485 2-wire communication interface
- USB 2.0 full speed (12Mbit/s) communication interface (mini-USB connector)
- CAN 2.0B communication interface (9pin D-SUB)

Features

- Uses TMC429 stepper motor controller for on-the-fly alteration of many motion specific parameters
- Uses TMC260 advanced stepper motor driver IC
- Up to 256 microsteps per fullstep
- Integrated protection: overtemperature/undervoltage

Software

- TMCL remote (direct mode) and standalone operation (memory for up to 2048 TMCL commands)
- Fully supported by TMCL-IDE (PC based integrated development environment)

Electrical data

- Supply voltage: +9V... +28V DC
- Motor current: up to 1.1A RMS (programmable) per axis

Mechanical data

- Board size: 130mm x 100mm, height 30mm max.
- 4 mounting holes for M3 screws

Please see separate Hardware Manual for additional information

2 Overview

The software running on the microprocessor of the TMCM-6110 consists of two parts, a boot loader and the firmware itself. Whereas the boot loader is installed during production and testing at TRINAMIC and remains untouched throughout the whole lifetime, the firmware can be updated by the user. New versions can be downloaded free of charge from the TRINAMIC website (http://www.trinamic.com).

The firmware of this module is related to the standard TMCL firmware shipped with regard to protocol and commands. Corresponding, this module is based on the TMC429 stepper motor controller and the TMC260 power driver and supports the standard TMCL with a special range of values.

The TMC260 is a new energy efficient high current high precision microstepping driver IC for bipolar stepper motors and offers TRINAMICs patented coolStep™ feature with its special commands. Please mind this technical innovation.

3 Putting the Module into Operation

In this chapter you will find basic information for putting your module into operation. This includes a simple example for a TMCL program and a short description of operating the module in direct mode.

THINGS YOU NEED

- TMCM-6110 with up to six appropriate motors (e.g. QSH4218)
- Interface (RS485, CAN or USB) suitable to your TMCM-6110 module with cables
- Nominal supply voltage +24V DC (+9... +28V DC) for your module
- TMCL-IDE program (can be downloaded free of charge from www.trinamic.com)
- Appropriate cables

PRECAUTIONS

Do not mix up connections or short-circuit pins.

Avoid bounding I/O wires with motor power wires.

Do not exceed the maximum power supply of 28V DC!

Do not connect or disconnect the motor while powered!

START WITH POWER SUPPLY OFF!

3.1 Basic Set-up

The following paragraph will guide you through the steps of connecting the unit and making first movements with the motor.

3.1.1 Connecting the Module

For first steps you will need a power supply and a communication between PC and one of the serial interfaces of the module (USB, RS485 or CAN).

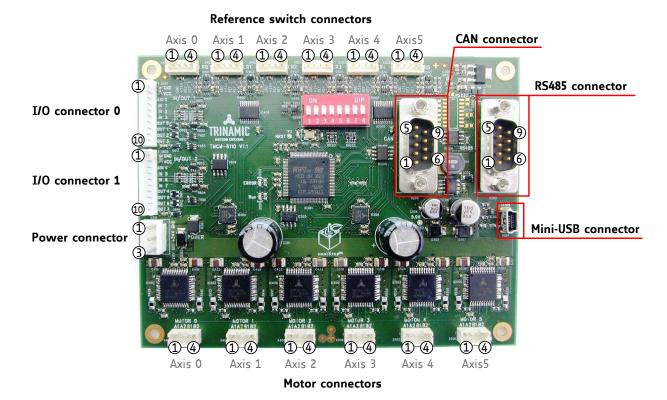


Figure 3.1 Connectors of TMCM-6110

3.1.1.1 Power Supply

Connect the power supply with the power supply connector (see Figure 3.1).

Label	Connector type	Mating connector type
Power Connector	JST B3P-VH (JST VH series, 3pins, 3.96mm pitch)	Connector housing: JST VHR-3N Contacts: JST SVH-21T-P1.1 Wire: 0.83mm², AWG 18

Pin	Label	Direction	Description
1	GND	Power (GND)	Common system supply and signal ground
2	V _{DRIVER}	Power (Supply input)	Stepper driver supply voltage. Without this voltage stepper driver ICs and therefore any motor connected will not be energized
3	V _{DIGITAL}	Power (Supply input)	Supply voltage for everything else apart from the stepper motor driver ICs. On-board voltage regulator will generate the necessary voltages for the digital circuits from this supply. This pin can be left unconnected. In this case a diode between V_DRIVER and V_DIGITAL will ensure supply of the digital parts. Please note: The diode has a current rating of 3A. As V_DIGITAL is available at the I/O connectors and the reference switch connectors also, always connect this pin to positive supply voltage in case substantial amount of current is withdrawn from these pins for external circuits. It is expected that V_DIGITAL and V_DRIVER are connected to the same power supply output when both pins are used. Otherwise please ensure that V_DIGITAL is always equal or higher than V_DRIVER when connected (due to the diode).

Do not exceed the maximum power supply of +28V DC!

The device is protected against wrong polarity by a diode that shorts the power supply when the polarity is wrong.

3.1.1.2 Communication

Choose your communication interface out of three serial interfaces: RS485, USB and CAN. If you need more information about the interfaces (e.g. pin assignments), refer to the Hardware Manual, please.

3.1.1.2.1 RS485

Connect the RS485 interface with the appropriate connector (see Figure 3.1).

Label	Connector type	Mating connector type
RS485 Connector	Tyco electronics 3-1634218-2 D-SUB socket with 4-40 female screw locks	Any standard D-SUB female 9-pin

Pin	Label	Direction	Description
1			
2	RS485-	Bi-directional	Differential RS485 bus signal (inverting)
3	GND	Power (GND)	Signal and system ground
4			
5			
6			
7	RS485+	Bi-directional	Differential RS485 bus signal (non-inverting)
8			
9			

RS485 as field bus interface normally requires an adapter. TRINAMIC offers the USB-2-485 converter between USB and RS485.

3.1.1.2.2 USB

Connect the USB interface with the appropriate connector (see Figure 3.1). To make use of the USB interface, a *device driver* has to be installed first. When the TMCM-6110 module is connected to the USB interface of a PC for the first time, you will be prompted for a driver by the operating system. The *tmcm-6110.inf* file is available on www.trinamic.com. After downloading and installing the driver the module is ready for use.

Label	Connector type	Mating connector type
Mini-USB connector	Molex 500075-1517 Mini USB Type B vertical receptacle	Any standard mini-USB plug

Pin	Label	Direction	Description
1	VBUS	Power (+5V input)	+5V supply from Host
2	D-	Bi-directional	USB Data -
3	D+	Bi-directional	USB Data +
4	ID		Connected to signal and system ground
5	GND	Power (GND)	Signal and System ground

CAN interface will be deactivated as soon as USB is connected (V_{BUS} voltage available)

On-board digital core logic (mainly processor and EEPROM) will be powered via USB in case no other

supply is connected. This can be used to set parameters / download TMCL programs or perform firmware updates with the module connected via USB only or inside the machine while the machine is powered off.

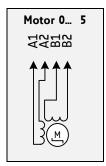
3.1.1.2.3 CAN

Connect the CAN interface with the appropriate connector (see Figure 3.1). The dip switch can be used for setting the address of the module. If all switches are off the address set by global parameter 71 (CAN ID) is valid.

Label	Connector type	Mating connector type
CAN connector	Male D-SUB 9-pin	Any standard D-SUB female 9-pin

Pin	Label	Direction	Description
1			
2	CAN_L	Bi-directional	Differential CAN bus signal (inverting)
3	GND	Power (GND)	Signal and system ground
4			
5			
6			
7	CAN_H	Bi-directional	Differential CAN bus signal (non-inverting)
8			
9			

TRINAMIC offers the CANnes card, which is a CAN-bus PCI-card and provides a simple and easy use of the CAN interface.


CAN interface will be de-activated in case USB is connected due to internal sharing of hardware resources.

3.1.1.3 Motor

The TMCM-6110 controls up to six 2-phase stepper motors. Connect one coil of each motor to the terminals marked A0 and A1 and the other coil to the connectors marked B0 and B1.

Label	Connector type	Mating connector type
Motor Connectors	CI0104P1VK0-LF CVIlux CI01 series, 4 pins, 2mm pitch	Connector housing CVIlux: CI01045000-A Contacts CVIlux: CI01T011PE0-A or Connector housing JST: PHR-4 Contacts JST: SPH-002T-P0.5S Wire: 0.22mm²

Pin	Label	Direction	Description
1	A1	Output	Pin 1 of motor coil A
2	A2	Output	Pin 2 of motor coil A
3	B1	Output	Pin 1 of motor coil B
4	B2	Output	Pin 2 of motor coil B

Before connecting a motor please make sure which cable belongs to which coil. Wrong connections may lead to damage of the driver chips or the motor!

Figure 3.2 Motor connection

3.1.1.4 Reference / Home Switches

Connect the switches with the appropriate connectors (see Figure 3.1), if you need them.

Label	Connector type	Mating connector type
Reference Switch Connectors	CI0104P1VK0-LF CVIlux CI01 series, 4 pins, 2mm pitch	Connector housing CVIlux: CI01045000-A Contacts CVIlux: CI01T011PE0-A or Connector housing JST: PHR-4 Contacts JST: SPH-002T-P0.5S Wire: 0.22mm ²

Pin	Label	Direction	Description
1	GND	Power (GND)	Signal and system ground
2	V_{DIGITAL}	Power (Supply input)	Connected to V _{DIGITAL}
3	REF_L	Input	Input for reference / limit switch left
4	REF_R	Input	Input for reference / limit switch right

3.1.1.5 I/Os

Connect inputs and outputs with the appropriate connectors (see Figure 3.1), if you want to use them.

Label	Connector type	Mating connector type
I/O Connector 0 + 1	CI01010P1VKO-LF CVIlux CI01 series, 10 pins, 2mm pitch	Connector housing CVIlux: CI010105000-A Contacts CVIlux: CI01T011PE0-A or Connector housing JST: PHR-10 Contacts JST: SPH-002T-P0.5S Wire: 0.22mm²

I/O CONNECTOR 0

Pin	Label	Direction	Description
1	GND	Power (GND)	GND
2	V _{DIGITAL}	Power (Supply output)	Connected to V _{DIGITAL} of Power connector
3	AIN_0	Input Dedicated analog input, input voltage range: 0 +10V, resolution: 12bit (0 4095)	
4	IN_1	Input	Digital input (+24V compatible)
5	IN_2	Input	Digital input (+24V compatible)
6	IN_3	Input	Digital input (+24V compatible)
7	OUT_0	Output	Open-drain output (max. 100mA) Integrated freewheeling diode
8	OUT_1	Output	Open-drain output (max. 100mA) Integrated freewheeling diode
9	OUT_2	Output	Open-drain output (max. 100mA) Integrated freewheeling diode
10	OUT_3	Output	Open-drain output (max. 1A) Integrated freewheeling diode

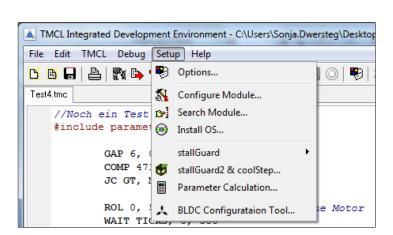
I/O CONNECTOR 1

Pin	Label	Direction	Description
1	GND	Power (GND)	GND
2	V _{DIGITAL}	Power (Supply output)	Connected to V _{DIGITAL} of Power connector
3	AIN_4	Input	Dedicated analog input, input voltage range: 0 +10V, resolution: 12bit (0 4095)
4	IN_5	Input	Digital input (+24V compatible)
5	IN_6	Input	Digital input (+24V compatible)
6	IN_7	Input	Digital input (+24V compatible)
7	OUT_4	Output	Open-drain output (max. 100mA) Integrated freewheeling diode
8	OUT_5	Output	Open-drain output (max. 100mA) Integrated freewheeling diode
9	OUT_6	Output	Open-drain output (max. 100mA) Integrated freewheeling diode
10	OUT_7	Output	Open-drain output (max. 1A) Integrated freewheeling diode

Please refer to the Hardware Manual for more information about the connectors.

3.1.2 Start the TMCL-IDE Software Development Environment

The TMCL-IDE is available on www.trinamic.com.


INSTALLING THE TMCL-IDE:

Make sure the COM port you intend to use is not blocked by another program.

Open TMCL-IDE by clicking TMCL.exe.

Choose **Setup** and **Options** and thereafter the **Connection tab**.

For RS485 choose COM port and type with the parameters shown in Figure 3.3 (baud rate 9600). Click OK.

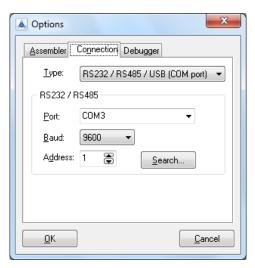
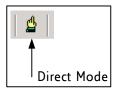
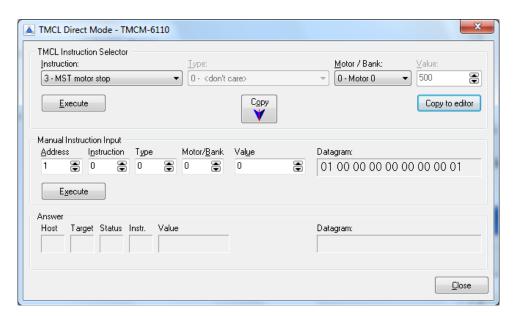



Figure 3.3 Setup dialogue and connection tab of the TMCL-IDE

Please refer to the TMCL-IDE User Manual for more information about connecting the other interfaces (see www.TRINAMIC.com).

3.1.3 Using TMCL Direct Mode


Start TMCL Direct Mode.

If the communication is established the TMCM-6110 is automatically detected.

If the module is not detected, please check cables, interface, power supply, COM port, and baud rate.

Issue a command by choosing *Instruction*, *Type* (if necessary), *Motor*, and *Value* and click *Execute* to send it to the module.

Examples:

- ROR rotate right, motor 0, value 500
- -> Click Execute. The first motor is rotating now.
- MST motor stop, motor 0
- -> Click Execute. The first motor stops now.

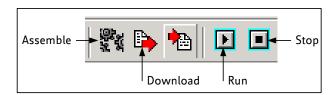
Top right of the TMCL Direct Mode window is the button Copy to editor. Click here to copy the chosen command and create your own TMCL program. The command will be shown immediately on the editor.

3.1.4 Important Motor Settings

There are some axis parameters which have to be adjusted right in the beginning after installing your module. Please set the upper limiting values for the speed (axis parameter 4), the acceleration (axis parameter 5), and the current (axis parameter 6). Further set the standby current (axis parameter 7) and choose your microstep resolution with axis parameter 140. Please use the SAP (Set Axis Parameter) command for adjusting these values. The SAP command is described in paragraph 4.6.5. You can use the TMCM-IDE direct mode for easily configuring your module.

The most important motor setting is the *absolute maximum motor current* setting, since too high values might cause motor damage!

IMPORTANT AXIS PARAMETERS FOR MOTOR SETTING


Number	Axis Parameter	Description	Range [Unit]
4	Maximum	Should not exceed the physically highest possible	0 2047
	positioning	value. Adjust the pulse divisor (no. 154), if the speed	
	speed	value is very low (<50) or above the upper limit. See	$\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\mu \text{steps}}{\text{sec}}\right]$
		TMC 429 datasheet for calculation of physical units.	[65536 sec]
5	Maximum	The limit for acceleration (and deceleration).	0 2047* ¹
	acceleration	Changing this parameter requires re-calculation of	
		the acceleration factor (no. 146) and the acceleration	
		divisor (no. 137), which is done automatically. See	
		TMC 429 datasheet for calculation of physical units.	
6	Absolute max.	The maximum value is 255. This value means 100%	0 255
	current	of the maximum current of the module. The current	$I_{peak} = < value > \times \frac{1.6A}{255}$
	(CS / Current	adjustment is within the range 0 255 and can be	255
	Scale)	adjusted in 32 steps.	$I_{RMS} = \langle value \rangle \times \frac{1.1A}{255}$
		0 7 7987 160 167 240 247	$I_{RMS} = \langle vatue \rangle \times \frac{1}{255}$
		8 15 88 95 168 175 248 255	
		16 23 96 103 176 183 24 31 104 111 184 191	
		32 39 112 119 192 199	
		40 47 120 127 200 207	
		48 55 128 135 208 215	
		<u>56 63</u> <u>136 143</u> <u>216 223</u>	
		64 71	
7	Standby current	The current limit two seconds after the motor has	0 255
'	Standby Current	stopped.	
		Stopped.	$I_{peak} = < value > \times \frac{1.6A}{255}$
			$I_{RMS} = \langle value \rangle \times \frac{1.1A}{255}$
140	Microstep	0 full step	0 8
	resolution	1 half step	
		2 4 microsteps	
		3 8 microsteps	
		4 16 microsteps	
		5 32 microsteps	
		6 64 microsteps	
		7 128 microsteps	
		8 256 microsteps	

*1 Unit of acceleration: $\frac{16MHz^2}{536870912 \cdot 2^{puls_divisor + ramp_divisor}} \frac{\text{microsteps}}{\text{sec}^2}$

3.1.5 TMCL Program Example

Type the following test program in the editor.

```
//A simple example for using TMCL and TMCL-IDE
        ROL 0, 500
                                    //Rotate motor 0 with speed 500
        WAIT TICKS, 0, 500
        MST 0
        ROR 1, 250
                                    //Rotate motor 0 with 250
        WAIT TICKS, 0, 500
        MST 1
        SAP 4, 2, 500
                                     //Set max. Velocity
        SAP 5, 2, 50
                                     //Set max. Acceleration
                                     //Move to Position 10000
        MVP ABS, 2, 10000
Loop:
        WAIT POS, 2, 0 MVP ABS, 2, -10000
                                     //Wait until position reached
                                     //Move to Position -10000
        WAIT POS, 2, 0
                                     //Wait until position reached
                                     //Infinite Loop
        JA Loop
```


- 1. Click on Icon **Assemble** to convert the TMCL into machine code.
- 2. Then download the program to the TMCM-6110 module via the icon **Download**.
- 3. Press icon *Run*. The desired program will be executed.
- 4. Click **Stop** button to stop the program.

4 TMCL and TMCL-IDE

The TMCM-6110 supports TMCL direct mode (binary commands or ASCII interface) and standalone TMCL program execution. You can store up to 2048 TMCL instructions on it.

In direct mode and most cases the TMCL communication over RS485, USB or CAN follows a strict master/slave relationship. That is, a host computer (e.g. PC/PLC) acting as the interface bus master will send a command to the TMCM-6110. The TMCL interpreter on the module will then interpret this command, do the initialization of the motion controller, read inputs and write outputs or whatever is necessary according to the specified command. As soon as this step has been done, the module will send a reply back over RS485/USB/CAN to the bus master. Only then should the master transfer the next command. Normally, the module will just switch to transmission and occupy the bus for a reply, otherwise it will stay in receive mode. It will not send any data over the interface without receiving a command first. This way, any collision on the bus will be avoided when there are more than two nodes connected to a single bus. The Trinamic Motion Control Language [TMCL] provides a set of structured motion control commands. Every motion control command can be given by a host computer or can be stored in an EEPROM on the TMCM module to form programs that run standalone on the module. For this purpose there are not only motion control commands but also commands to control the program structure (like conditional jumps, compare and calculating).

Every command has a binary representation and a mnemonic. The binary format is used to send commands from the host to a module in direct mode, whereas the mnemonic format is used for easy usage of the commands when developing standalone TMCL applications using the TMCL-IDE (IDE means Integrated Development Environment).

There is also a set of configuration variables for the axis and for global parameters which allow individual configuration of nearly every function of a module. This manual gives a detailed description of all TMCL commands and their usage.

4.1 Binary Command Format

When commands are sent from a host to a module, the binary format has to be used. Every command consists of a one-byte command field, a one-byte type field, a one-byte motor/bank field and a four-byte value field. So the binary representation of a command always has seven bytes. When a command is to be sent via RS485 or USB interface, it has to be enclosed by an address byte at the beginning and a checksum byte at the end. In this case it consists of nine bytes.

This is different when communicating is via the CAN bus. Address and checksum are included in the CAN standard and do not have to be supplied by the user.

The binary command format for RS485/USB is as follows:

Bytes	Meaning	
1	Module address	
1	Command number	
1	Type number	
1	Motor or Bank number	
4	Value (MSB first!)	
1	Checksum	

- The checksum is calculated by adding up all the other bytes using an 8-bit addition.
- When using CAN bus, just leave out the first byte (module address) and the last byte (checksum).

CHECKSUM CALCULATION

As mentioned above, the checksum is calculated by adding up all bytes (including the module address byte) using 8-bit addition. Here are two examples to show how to do this:

```
in C:
    unsigned char i, Checksum;
    unsigned char Command[9];

    //Set the "Command" array to the desired command
    Checksum = Command[0];
    for(i=1; i<8; i++)
        Checksum+=Command[i];

Command[8]=Checksum; //insert checksum as last byte of the command
    //Now, send it to the module</pre>
```

4.2 Reply Format

Every time a command has been sent to a module, the module sends a reply.

The reply format for RS485/USB is as follows:

Bytes	Meaning	
1	Reply address	
1	Module address	
1	Status (e.g. 100 means "no error")	
1	Command number	
4	Value (MSB first!)	
1	Checksum	

- The checksum is also calculated by adding up all the other bytes using an 8-bit addition.
- When using CAN bus, the first byte (reply address) and the last byte (checksum) are left out.
- Do not send the next command before you have received the reply!

4.2.1 Status Codes

The reply contains a status code.

The status code can have one of the following values:

Code	Meaning
100	Successfully executed, no error
101	Command loaded into TMCL
	program EEPROM
1	Wrong checksum
2	Invalid command
3	Wrong type
4	Invalid value
5	Configuration EEPROM locked
6	Command not available

4.3 Standalone Applications

The module is equipped with an EEPROM for storing TMCL applications. You can use TMCL-IDE for developing standalone TMCL applications. You can load them down into the EEPROM and then it will run on the module. The TMCL-IDE contains an editor and the TMCL assembler where the commands can be entered using their mnemonic format. They will be assembled automatically into their binary representations. Afterwards this code can be downloaded into the module to be executed there.

4.4 TMCL Command Overview

In this section a short overview of the TMCL commands is given.

4.4.1 TMCL Commands

Command	Number	Parameter	Description
ROR	1	<motor number="">, <velocity></velocity></motor>	Rotate right with specified velocity
ROL	2	<motor number="">, <velocity></velocity></motor>	Rotate left with specified velocity
MST	3	<motor number=""></motor>	Stop motor movement
MVP	4	ABS REL COORD, <motor number="">,</motor>	Move to position (absolute or relative)
		<pre><position offset></position offset></pre>	· ·
SAP	5	<pre><parameter>, <motor number="">, <value></value></motor></parameter></pre>	Set axis parameter (motion control
			specific settings)
GAP	6	<pre><parameter>, <motor number=""></motor></parameter></pre>	Get axis parameter (read out motion
			control specific settings)
STAP	7	<pre><parameter>, <motor number=""></motor></parameter></pre>	Store axis parameter permanently (non
			volatile)
RSAP	8	<pre><parameter>, <motor number=""></motor></parameter></pre>	Restore axis parameter
SGP	9	<pre><parameter>, <bank number="">, value</bank></parameter></pre>	Set global parameter (module specific
			settings e.g. communication settings
			or TMCL user variables)
GGP	10	<pre><parameter>, <bank number=""></bank></parameter></pre>	Get global parameter (read out module
			specific settings e.g. communication
			settings or TMCL user variables)
STGP	11	<parameter>, <bank number=""></bank></parameter>	Store global parameter (TMCL user
			variables only)
RSGP	12	<pre><parameter>, <bank number=""></bank></parameter></pre>	Restore global parameter (TMCL user
			variable only)
RFS	13	START STOP STATUS, <motor number=""></motor>	Reference search
SIO	14	<port number="">, <bank number="">, <value></value></bank></port>	Set digital output to specified value
GIO	15	<pre><port number="">, <bank number=""></bank></port></pre>	
CALC	19	<pre><operation>, <value></value></operation></pre> Process accumulator & value	
COMP	20	<pre><value></value></pre>	
JC	21	<condition>, <jump address=""></jump></condition>	Jump conditional
JA	22	<jump address=""></jump>	Jump absolute
CSUB	23	<subroutine address=""></subroutine>	Call subroutine
RSUB	24		Return from subroutine
EI	25	<interrupt number=""></interrupt>	Enable interrupt
DI	26	<interrupt number=""></interrupt>	Disable interrupt
WAIT	27	<condition>, <motor number="">, <ticks></ticks></motor></condition>	Wait with further program execution
STOP	28		Stop program execution
SCO SCO	30	<coordinate number="">, <motor number="">,</motor></coordinate>	Set coordinate
		<position></position>	
GCO	31	<coordinate number="">, <motor number=""></motor></coordinate>	Get coordinate
CCO	32	<coordinate number="">, <motor number=""> Capture coordinate</motor></coordinate>	
CALCX	33	<operation></operation>	Process accumulator & X-register
AAP	34	<pre><parameter>, <motor number=""></motor></parameter></pre> Accumulator to axis parameter	
AGP	35	<pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Accumulator to global parameter
VECT	37	<interrupt number="">, <label></label></interrupt>	Set interrupt vector
RETI	38	Return from interrupt	
ACO	39	<coordinate number="">, <motor number=""></motor></coordinate>	Accu to coordinate

4.4.2 Commands Listed According to Subject Area

4.4.2.1 Motion Commands

These commands control the motion of the motor. They are the most important commands and can be used in direct mode or in standalone mode.

Mnemonic	Command number	Meaning
ROL	2	Rotate left
ROR	1	Rotate right
MVP	4	Move to position
MST	3	Motor stop
RFS	13	Reference search
SC0	30	Store coordinate
CCO	32	Capture coordinate
GCO	31	Get coordinate

4.4.2.2 Parameter Commands

These commands are used to set, read and store axis parameters or global parameters. Axis parameters can be set independently for the axis, whereas global parameters control the behavior of the module itself. These commands can also be used in direct mode and in standalone mode.

Mnemonic	Command number	Meaning	
SAP	5	Set axis parameter	
GAP	6	Get axis parameter	
STAP	7	Store axis parameter into EEPROM	
RSAP	8	Restore axis parameter from EEPROM	
SGP	9	Set global parameter	
GGP	10	Get global parameter	
STGP	11	Store global parameter into EEPROM	
RSGP	12	Restore global parameter from EEPROM	

4.4.2.3 Control Commands

These commands are used to control the program flow (loops, conditions, jumps etc.). It does not make sense to use them in direct mode. They are intended for standalone mode only.

Mnemonic	Command number	Meaning				
JA	22	Jump always				
JC	21	Jump conditional				
COMP	20	Compare accumulator with constant value				
CSUB	23	Call subroutine				
RSUB	24	Return from subroutine				
WAIT	27	Wait for a specified event				
STOP	28	End of a TMCL program				

4.4.2.4 I/O Port Commands

These commands control the external I/O ports and can be used in direct mode and in standalone mode.

Mnemonic	Command number	Meaning
SIO	14	Set output
GIO	15	Get input

4.4.2.5 Calculation Commands

These commands are intended to be used for calculations within TMCL applications. Although they could also be used in direct mode it does not make much sense to do so.

Mnemonic	Command number	Meaning
CALC	19	Calculate using the accumulator and a
		constant value
CALCX	33	Calculate using the accumulator and the X
		register
AAP	34	Copy accumulator to an axis parameter
AGP	35	Copy accumulator to a global parameter
ACO	39	Copy accu to coordinate

For calculating purposes there is an accumulator (or accu or A register) and an X register. When executed in a TMCL program (in standalone mode), all TMCL commands that read a value store the result in the accumulator. The X register can be used as an additional memory when doing calculations. It can be loaded from the accumulator.

When a command that reads a value is executed in direct mode the accumulator will not be affected. This means that while a TMCL program is running on the module (standalone mode), a host can still send commands like GAP and GGP to the module (e.g. to query the actual position of the motor) without affecting the flow of the TMCL program running on the module.

4.4.2.6 Interrupt Commands

Interrupt processing has been introduced in the TMCL firmware for ARM based modules.

Mnemonic	Command number Meaning				
EI	25	Enable interrupt			
DI	6 Disable interrupt				
VECT	37	Set interrupt vector			
RETI	38	Return from interrupt			

4.4.2.6.1 Interrupt Types:

There are many different interrupts in TMCL, like timer interrupts, stop switch interrupts, position reached interrupts, and input pin change interrupts. Each of these interrupts has its own interrupt vector. Each interrupt vector is identified by its interrupt number. Please use the TMCL included file *Interrupts.inc* for symbolic constants of the interrupt numbers.

4.4.2.6.2 Interrupt Processing:

When an interrupt occurs and this interrupt is enabled and a valid interrupt vector has been defined for that interrupt, the normal TMCL program flow will be interrupted and the interrupt handling routine will be called. Before an interrupt handling routine gets called, the context of the normal program will be saved automatically (i.e. accumulator register, X register, TMCL flags).

On return from an interrupt handling routine, the context of the normal program will automatically be restored and the execution of the normal program will be continued.

There is no interrupt nesting, i.e. all other interrupts are disabled while an interrupt handling routine is being executed.

4.4.2.6.3 Interrupt Vectors:

The following table shows all interrupt vectors that can be used.

T				
Interrupt number	Interrupt type			
0	Timer 0			
1	Timer 1			
2	Timer 2			
3	Target position reached axis 0			
4	Target position reached axis 1			
5	Target position reached axis 2			
6	Target position reached axis 3			
7	Target position reached axis 4			
8	Target position reached axis 5			
15	stallGuard axis 0			
16	stallGuard axis 1			
17	stallGuard axis 2			
18	stallGuard axis 3			
19	stallGuard axis 4			
20	stallGuard axis 5			
27	Left stop switch axis 0			
28	Right stop switch axis 0			
29	Left stop switch axis 1			
30	Right stop switch axis 1			
31	Left stop switch axis 2			
32	Right stop switch axis 2			
33	Left stop switch axis 3			
34	Right stop switch axis 3			
35	Left stop switch axis 4			
36	Right stop switch axis 4			
37	Left stop switch axis 5			
38	Right stop switch axis 5			
39	Input change 0			
40	Input change 1			
41	Input change 2			
42	Input change 3			
43	Input change 4			
44	Input change 5			
45	Input change 6			
46	Input change 7			
255	Global interrupts			

4.4.2.6.4 Further Configuration of Interrupts

Some interrupts need further configuration (e.g. the timer interval of a timer interrupt). This can be done using SGP commands with parameter bank 3 (SGP <type>, 3, <value>). Please refer to the SGP command (paragraph 4.6.9) for further information about that.

4.4.2.6.5 Using Interrupts in TMCL

To use an interrupt the following things have to be done:

- Define an interrupt handling routine using the VECT command.
- If necessary, configure the interrupt using an SGP <type>, 3, <value> command.
- Enable the interrupt using an EI <interrupt> command.
- Globally enable interrupts using an EI 255 command.
- An interrupt handling routine must always end with a RETI command

THE FOLLOWING EXAMPLE SHOWS THE USE OF A TIMER INTERRUPT:

```
VECT o, TimeroIrq //define the interrupt vector
    SGP 0, 3, 1000
                       //configure the interrupt: set its period to 1000ms
    EI o
                       //enable this interrupt
    EI 255
                       //qlobally switch on interrupt processing
//Main program: toggles output 3, using a WAIT command for the delay
Loop:
    SIO 3, 2, 1
    WAIT TICKS, o, 50
    SIO 3, 2, 0
    WAIT TICKS, o, 50
    JA Loop
//Here is the interrupt handling routine
TimeroIrq:
    GIO o, 2
                       //check if OUTo is high
    JC NZ, OutoOff
                       //jump if not
    SIO 0, 2, 1
                       //switch OUTo high
                       //end of interrupt
    RETI
OutoOff:
    SIO o, 2, o
                       //switch OUTo low
                       //end of interrupt
    RETI
```

In the example above, the interrupt numbers are used directly. To make the program better readable use the provided include file *Interrupts.inc*. This file defines symbolic constants for all interrupt numbers which can be used in all interrupt commands. The beginning of the program above then looks like the following:

```
#include Interrupts.inc
   VECT TI_TIMERo, TimeroIrq
   SGP TI_TIMERo, 3, 1000
   EI TI_TIMERo
   EI TI_GLOBAL
```

Please also take a look at the other example programs (see www.trinamic.com).

4.4.2.7 ASCII Commands

Mnemonic	Command number	Meaning
-	139	Enter ASCII mode
BIN	-	Quit ASCII mode and return to binary
		mode. This command can only be used
		in ASCII mode.

4.5 The ASCII Interface

There is also an ASCII interface that can be used to communicate with the module and to send some commands as text strings.

PROCEED AS FOLLOWS

- The ASCII command line interface is entered by sending the binary command 139 (enter ASCII mode).
- Afterwards the commands are entered as in the TMCL-IDE. Please note that only those commands, which can be used in direct mode, also can be entered in ASCII mode.
- For leaving the ASCII mode and re-enter the binary mode enter the command BIN.

4.5.1 Command Line Format

As the first character, the address character has to be sent. The address character is A when the module address is 1, B for modules with address 2 and so on. After the address character there may be spaces (but this is not necessary). Then, send the command with its parameters. At the end of a command line a <CR> character has to be sent.

EXAMPLES FOR VALID COMMAND LINES

```
AMVP ABS, 1, 50000
A MVP ABS, 1, 50000
AROL 2, 500
A MST 1
ABIN
```

These command lines would address the module with address 1. To address e.g. module 3, use address character *C* instead of *A*. The last command line shown above will make the module return to binary mode.

4.5.2 Format of a Reply

After executing the command the module sends back a reply in ASCII format. The reply consists of:

- the address character of the host (host address that can be set in the module)
- the address character of the module
- the status code as a decimal number
- the return value of the command as a decimal number
- a <CR> character

So, after sending AGAP o, 1 the reply would be BA 100 -5000 if the actual position of axis 1 is -5000, the host address is set to 2 and the module address is 1. The value 100 is the status code 100 that means command successfully executed.

4.5.3 Commands Used in ASCII Mode

The following commands can be used in ASCII mode: ROL, ROR, MST, MVP, SAP, GAP, STAP, RSAP, SGP, GGP, STGP, RSGP, RFS, SIO, GIO, SCO, GCO, CCO, UFO, UF1, UF2, UF3, UF4, UF5, UF6, and UF7.

SPECIAL COMMANDS WHICH ARE ONLY AVAILABLE IN ASCII MODE

- BIN: This command quits ASCII mode and returns to binary TMCL mode.
- RUN: This command can be used to start a TMCL program in memory.
- STOP: Stops a running TMCL application.

4.5.4 Configuring the ASCII Interface

The module can be configured so that it starts up either in binary mode or in ASCII mode. **Global parameter 67 is used for this purpose** (please see also chapter 6.1).

Bit 0 determines the startup mode: if this bit is set, the module starts up in ASCII mode, else it will start up in binary mode (default).

Bit 4 and Bit 5 determine how the characters that are entered are echoed back. Normally, both bits are set to zero. In this case every character that is entered is echoed back when the module is addressed. Characters can also be erased using the backspace character (press the backspace key in a terminal program).

When bit 4 is set and bit 5 is clear the characters that are entered are not echoed back immediately but the entire line will be echoed back after the <CR> character has been sent.

When bit 5 is set and bit 4 is clear there will be no echo, only the reply will be sent. This may be useful in RS485 systems.

4.6 Commands

The module specific commands are explained in more detail on the following pages. They are listed according to their command number.

4.6.1 ROR (rotate right)

The motor will be instructed to rotate with a specified velocity in *right* direction (increasing the position counter).

Internal function: first, velocity mode is selected. Then, the velocity value is transferred to axis parameter #2 (target velocity).

The module is based on the TMC429 stepper motor controller and the TMC260 power driver. This makes possible choosing a velocity between 0 and 2047.

Related commands: ROL, MST, SAP, GAP

Mnemonic: ROR <motor>, <velocity>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
1	don't care	<motor> 0 5</motor>	<velocity> 0 2047</velocity>

Reply in direct mode:

STATUS	VALUE		
100 – OK	don't care		

Example:

Rotate right motor 2, velocity = 350

Mnemonic: ROR 2, 350

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$01	\$00	\$02	\$00	\$00	\$01	\$5e

4.6.2 ROL (rotate left)

The motor will be instructed to rotate with a specified velocity (opposite direction compared to ROR, decreasing the position counter).

Internal function: first, velocity mode is selected. Then, the velocity value is transferred to axis parameter #2 (target velocity).

The module is based on the TMC429 stepper motor controller and the TMC260 power driver. This makes possible choosing a velocity between 0 and 2047.

Related commands: ROR, MST, SAP, GAP

Mnemonic: ROL <motor>, <velocity>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
2	don't care	<motor> 0 5</motor>	<velocity> 0 2047</velocity>

Reply in direct mode:

STATUS	VALUE	
100 - OK	don't care	

Example:

Rotate left motor 0, velocity = 1200

Mnemonic: ROL 0, 1200

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$02	\$00	\$00	\$00	\$00	\$04	\$b0

4.6.3 MST (motor stop)

The motor will be instructed to stop.

Internal function: the axis parameter target velocity is set to zero.

Related commands: ROL, ROR, SAP, GAP

Mnemonic: MST <motor>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
3	don't care	<motor> 0 5</motor>	don't care

Reply in direct mode:

STATUS	VALUE
100 - OK	don't care

Example:

Stop motor 0
Mnemonic: MST 0

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$03	\$00	\$00	\$00	\$00	\$00	\$00

4.6.4 MVP(move to position)

The motor will be instructed to move to a specified relative or absolute position or a pre-programmed coordinate. It will use the acceleration/deceleration ramp and the positioning speed programmed into the unit. This command is non-blocking – that is, a reply will be sent immediately after command interpretation and initialization of the motion controller. Further commands may follow without waiting for the motor reaching its end position. The maximum velocity and acceleration are defined by axis parameters #4 and #5.

The range of the MVP command is 32 bit signed (-2.147.483.648... +2.147.483.647). Positioning can be interrupted using MST, ROL or ROR commands.

THREE OPERATION TYPES ARE AVAILABLE:

- Moving to an absolute position in the range from -2.147.483.648... +2.147.483.647 (-2³¹... 2³¹-1).
- Starting a relative movement by means of an offset to the actual position. In this case, the new resulting position value must not exceed the above mentioned limits, too.
- Moving the motor to a (previously stored) coordinate (refer to SCO for details).

Please note, that the distance between the actual position and the new one should not be more than 2.147.483.647 (2³¹-1) microsteps. Otherwise the motor will run in the opposite direction in order to take the shorter distance.

Internal function: A new position value is transferred to the axis parameter #2 target position".

Related commands: SAP, GAP, SCO, CCO, GCO, MST

Mnemonic: MVP <ABS|REL|COORD>, <motor>, <position|offset|coordinate number>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE	
	0 ABS – absolute		<position></position>	
4	1 REL – relative	<motor></motor>	<offset></offset>	
·	2 COORD – coordinate	0 5	<pre><coordinate number=""> 0 20</coordinate></pre>	

Reply in direct mode:

STATUS	VALUE
100 – OK	don't care

Example:

Move motor 0 to (absolute) position 90000

Mnemonic: MVP ABS, 0, 9000

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$04	\$00	\$00	\$00	\$01	\$5f	\$90

Example:

Move motor 0 from current position 1000 steps backward (move relative -1000) *Mnemonic:* MVP REL, 0, -1000

Dilluly.								
Byte Index	0	1	2	3	4	5	6	7
Function	Target- address	Instruction Number	Type	Motor/ Bank	Operand Byte3	Operand Byte2	Operand Byte1	Operand Byte0
Value (hex)	\$01	\$04	\$01	\$00	\$ff	\$ff	\$fc	\$18

Versatile options for the MVP COORD command:

- Moving only one motor: Set the <motor> parameter to the motor number (0...2).
- Moving multiple motors without interpolation: Set bit 7 of the <motor> parameter. Now the
 bits 0...2 of the <motor> parameter define which motors are to be started. Each of these bits
 stands for one motor.
- Moving multiple motors using interpolation: Set bit 6 of the <motor> parameter. Now the bits 0...2 of the <motor> parameter define which motors are to be moved using the interpolation. Each of these bits stands for one motor.

Examples MVP COORD:

 Move motors 0, 1 and 2 to coordinate 2 using interpolation Mnemonic: MVP COORD, \$47, 2

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$04	\$02	\$47	\$00	\$00	\$00	\$02	\$50

 Move motors 0, 1 and 2 to coordinate 5 without using interpolation Mnemonic: MVP COORD, \$87, 5

Binary:

Byte Index	0	1	2	3	4	5	6	7	8
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand	Checksum
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0	
Value (hex)	\$01	\$04	\$02	\$87	\$00	\$00	\$00	\$05	\$93

Move motor 0 to previously stored coordinate #8
 Mnemonic: MVP COORD, 0, 8

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target- address	Instruction Number	Type	Motor/ Bank	Operand Byte3	Operand Byte2	Operand Byte1	Operand Byte0
Value (hex)	\$01	\$04	\$02	\$00	\$00	\$00	\$00	\$08

When moving to a coordinate, the coordinate has to be set properly in advance with the help of the SCO, CCO or ACO command.

4.6.5 SAP (set axis parameter)

With this command most of the motion control parameters can be specified. The settings will be stored in SRAM and therefore are volatile. That is, information will be lost after power off.

For a table with parameters and values which can be used together with this command please refer to chapter 5.

Please use command STAP (store axis parameter) in order to store any setting permanently.

Internal function: the parameter format is converted ignoring leading zeros (or ones for negative values). The parameter is transferred to the correct position in the appropriate device.

Related commands: GAP, STAP, RSAP, AAP

Mnemonic: SAP <parameter number>, <motor>, <value>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
5	<parameter number=""></parameter>	<motor> 0 5</motor>	<value></value>

Reply in direct mode:

STATUS	VALUE
100 - OK	don't care

Example:

Set the absolute maximum current of motor 2 to 200mA

Because of the current unit $I_{RMS} = < value > \times \frac{1.1A}{255}$ the 200mA setting has the <value> 47 (value range for current setting: 0... 255). The value for current setting has to be calculated before using this special SAP command.

Mnemonic: SAP 6, 2, 47

Byte Index	0	1	2	3	4	5	6	7
Function	Target- address	Instruction Number	Type	Motor/ Bank	Operand Byte3	Operand Bvte2	Operand Bvte1	Operand Bvte0
	address			Dalik	bytes	bytez	Бугет	byteo
Value (hex)	\$01	\$05	\$06	\$02	\$00	\$00	\$00	\$2f

4.6.6 GAP (get axis parameter)

Most parameters of the TMCM-6110 can be adjusted individually for the axis. With this parameter they can be read out. In standalone mode the requested value is also transferred to the accumulator register for further processing purposes (such as conditioned jumps). In direct mode the value read is only output in the *value* field of the reply (without affecting the accumulator).

For a table with parameters and values which can be used together with this command please refer to chapter 5.

Internal function: the parameter is read out of the correct position in the appropriate device. The parameter format is converted adding leading zeros (or ones for negative values).

Related commands: SAP, STAP, AAP, RSAP

Mnemonic: GAP <parameter number>, <motor>

Binary representation:

INSTRUCTION NO. TYPE		MOT/BANK	VALUE	
6	<parameter number=""></parameter>	<motor> 0 5</motor>	don't care	

Reply in direct mode:

STATUS	VALUE		
100 - OK	don't care		

Example:

Get the maximum current of motor 1 *Mnemonic:* GAP 6, 1

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target- address	Instruction Number	Type	Motor/ Bank	Operand Byte3	Operand Byte2	Operand Byte1	Operand Byte0
Value (hex)	\$01	\$06	\$06	\$01	\$00	\$00	\$00	\$00

Reply:

Byte Index	0	1	2	3	4	5	6	7
Function	Host-	Target-	Status	Instructi	Operand	Operand	Operand	Operand
	address	address		on	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$02	\$01	\$64	\$06	\$00	\$00	\$02	\$80

⇒ Status = no error, value = 128

4.6.7 STAP (store axis parameter)

An axis parameter previously set with a *Set Axis Parameter* command (SAP) will be stored permanent. Most parameters are automatically restored after power up.

For a table with parameters and values which can be used together with this command please refer to chapter 5.

The STAP command will not have any effect when the configuration EEPROM is locked (refer to 6.1). In direct mode, the error code 5 (configuration EEPROM locked, see also section 4.2.1) will be returned in this case.

Internal function: an axis parameter value stored in SRAM will be transferred to EEPROM and loaded from EEPORM after next power up.

Related commands: SAP, RSAP, GAP, AAP

Mnemonic: STAP <parameter number>, <motor>

Binary representation:

INSTRUCTION NO.	NSTRUCTION NO. TYPE		VALUE	
7	<parameter number=""></parameter>	<motor></motor>	don't care*	

^{*} the value operand of this function has no effect. Instead, the currently used value (e.g. selected by SAP) is saved

Reply in direct mode:

STATUS	VALUE		
100 - OK	don't care		

Example:

Store the maximum speed of motor 0

Mnemonic: STAP 4, 0

Byte Index	0	1	2	3	4	5	6	7
Function	Target- address	Instruction Number	Type	Motor/ Bank	Operand Byte3	Operand Byte2	Operand Byte1	Operand Byte0
Value (hex)	\$01	\$07	\$04	\$00	\$00	\$00	\$00	\$00

4.6.8 RSAP (restore axis parameter)

For all configuration-related axis parameters non-volatile memory locations are provided. By default, most parameters are automatically restored after power up. A single parameter that has been changed before can be reset by this instruction also.

For a table with parameters and values which can be used together with this command please refer to chapter 5.

Internal function: the specified parameter is copied from the configuration EEPROM memory to its RAM location.

Relate commands: SAP, STAP, GAP, and AAP

Mnemonic: RSAP <parameter number>, <motor>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE	
8	<parameter number=""></parameter>	<motor> 0 5</motor>	don't care	

Reply structure in direct mode:

STATUS	VALUE		
100 – OK	don't care		

Example:

Restore the maximum current of motor 3

Mnemonic: RSAP 6, 0

Byte Index	0	1	2	3	4	5	6	7
Function	Target- address	Instruction Number	Type	Motor/ Bank	Operand Byte3	Operand Byte2	Operand Byte1	Operand Byte0
Value (hex)	\$01	\$08	\$06	\$03	\$00	\$00	\$00	\$00

4.6.9 SGP (set global parameter)

With this command most of the module specific parameters not directly related to motion control can be specified and the TMCL user variables can be changed. Global parameters are related to the host interface, peripherals or application specific variables. The different groups of these parameters are organized in banks to allow a larger total number for future products. Currently, only bank 0 and 1 are used for global parameters, and bank 2 is used for user variables.

All module settings will automatically be stored non-volatile (internal EEPROM of the processor). The TMCL user variables will not be stored in the EEPROM automatically, but this can be done by using STGP commands.

For a table with parameters and bank numbers which can be used together with this command please refer to chapter 6.

Internal function: the parameter format is converted ignoring leading zeros (or ones for negative values). The parameter is transferred to the correct position in the appropriate (on board) device.

Related commands: GGP, STGP, RSGP, AGP

Mnemonic: SGP <parameter number>, <bank number>, <value>

Binary representation:

INSTRUCTION NO.	STRUCTION NO. TYPE		VALUE		
9	<parameter number=""></parameter>	<bank number=""></bank>	<value></value>		

Reply in direct mode:

STATUS	VALUE		
100 - OK	don't care		

Example:

Set the serial address of the target device to 3 *Mnemonic:* SGP 66, 0, 3

Byte Index	0	1	2	3	4	5	6	7
Function	Target- address	Instruction Number	Type	Motor/ Bank	Operand Byte3	Operand Byte2	Operand Byte1	Operand Byte0
Value (hex)	\$01	\$09	\$42	\$00	\$00	\$00	\$00	\$03

4.6.10 GGP (get global parameter)

All global parameters can be read with this function. Global parameters are related to the host interface, peripherals or application specific variables. The different groups of these parameters are organized in banks to allow a larger total number for future products. Currently, only bank 0 and 1 are used for global parameters, and bank 2 is used for user variables.

For a table with parameters and bank numbers which can be used together with this command please refer to chapter 6.

Internal function: the parameter is read out of the correct position in the appropriate device. The parameter format is converted adding leading zeros (or ones for negative values).

Related commands: SGP, STGP, RSGP, AGP

Mnemonic: GGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE	
10	<parameter number=""></parameter>	<bank number=""></bank>	don't care	

Reply in direct mode:

STATUS	VALUE
100 - OK	don't care

Example:

Get the serial address of the target device

Mnemonic: GGP 66, 0

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$0a	\$42	\$00	\$00	\$00	\$00	\$00

Reply:

Byte Index	0	1	2	3	4	5	6	7
Function	Host-	Target-	Status	Instruction	Operand	Operand	Operand	Operand
	address	address			Byte3	Byte2	Byte1	Byte0
Value (hex)	\$02	\$01	\$64	\$0a	\$00	\$00	\$00	\$01

⇒ Status = no error, value = 1

4.6.11 STGP (store global parameter)

This command is used to store TMCL user variables permanently in the EEPROM of the module. Some global parameters are located in RAM memory, so without storing modifications are lost at power down. This instruction enables enduring storing. Most parameters are automatically restored after power up.

For a table with parameters and bank numbers which can be used together with this command please refer to chapter 6.

Internal function: the specified parameter is copied from its RAM location to the configuration EEPROM.

Related commands: SGP, GGP, RSGP, AGP

Mnemonic: STGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE	
11	<parameter number=""></parameter>	<bank number=""></bank>	don't care	

Reply in direct mode:

STATUS	VALUE
100 - OK	don't care

Example:

Store the user variable #42 *Mnemonic:* STGP 42, 2

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$0b	\$2a	\$02	\$00	\$00	\$00	\$00

4.6.12 RSGP (restore global parameter)

With this command the contents of a TMCL user variable can be restored from the EEPROM. For all configuration-related axis parameters, non-volatile memory locations are provided. By default, most parameters are automatically restored after power up. A single parameter that has been changed before can be reset by this instruction.

For a table with parameters and bank numbers which can be used together with this command please refer to chapter 6.

Internal function: The specified parameter is copied from the configuration EEPROM memory to its RAM location.

Relate commands: SGP, STGP, GGP, and AGP

Mnemonic: RSGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE	
12	<parameter number=""></parameter>	<bank number=""></bank>	don't care	

Reply structure in direct mode:

STATUS	VALUE		
100 – OK	don't care		

Example:

Restore the user variable #42 *Mnemonic:* RSGP 42, 2

Byte Index	0	1	2	3	4	5	6	7
Function	Target- address	Instruction Number	Type	Motor/ Bank	Operand Byte3	Operand Byte2	Operand Byte1	Operand Byte0
Value (hex)	\$01	\$0c	\$2a	\$02	\$00	\$00	\$00	\$00

4.6.13 RFS (reference search)

The TMCM-6110 has a built-in reference search algorithm which can be used. The reference search algorithm provides switching point calibration and supports up-to three switches. The status of the reference search can also be queried to see if it has already been finished. (In a TMCL program it is better to use the WAIT command to wait for the end of a reference search.) Please see the appropriate parameters in the axis parameter table to configure the reference search algorithm to meet your needs (chapter 5). The reference search can be started, stopped, and the actual status of the reference search can be checked.

Internal function: the reference search is implemented as a state machine, so interaction is possible during execution.

Related commands: WAIT

Mnemonic: RFS <START|STOP|STATUS>, <motor>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
13	0 START – start ref. search 1 STOP – abort ref. search 2 STATUS – get status	<motor> 0 5</motor>	see below

Reply in direct mode:

When using type 0 (START) or 1 (STOP):

STATUS	VALUE
100 – OK	don't care

When using type 2 (STATUS):

STATUS	VALUE			
100 – OK	0 No reference search active			
	other values	Reference search active		

Example:

Start reference search of motor 0 *Mnemonic:* RFS START, 0

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction Number	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$0d	\$00	\$00	\$00	\$00	\$00	\$00

With this module it is possible to use stall detection instead of a reference search.

4.6.14 SIO (set input / output)

This command can be used as follows:

- SIO sets the status of the general digital output either to low (0) or to high (1). Bank 2 is used for this purpose.
- SIO is also used to switch the pull-up resistors for reference switch inputs on and off. Bank 0 is used for this purpose.

Internal function: the passed value is transferred to the specified output line.

Related commands: GIO, WAIT

Mnemonic: SIO <port number>, <bank number>, <value>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
14	<port number=""></port>	<bank number=""></bank>	<value> 0/1</value>

Reply structure:

STATUS	VALUE
100 - OK	don't care

Example:

Set OUT_7 to high (bank 2, output 7)

Mnemonic: SIO 7, 2, 1

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$0e	\$07	\$02	\$00	\$00	\$00	\$01

Reference switch connectors

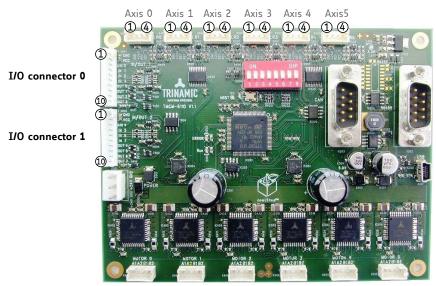


Figure 4.1 Connectors of TMCM-6110

I/O CONNECTOR 0 AND 1

Pin	Connector 0	Connector 1	Direction	Description	
1	GND	GND	Power (GND)	GND	
2	V _{DIGITAL}	V _{DIGITAL}	Power (supply output)	Connected to V _{DIGITAL} of power connector	
3	AIN_0	AIN_4	Input	Dedicated analog input, input voltage range: 0 +10V, resolution: 12bit (0 4095)	
4	IN_1	IN_5	Input	Digital input (+24V compatible)	
5	IN_2	IN_6	Input	Digital input (+24V compatible)	
6	IN_3	IN_7	Input	Digital input (+24V compatible)	
7	OUT_0	OUT_4	Output	Open-drain output (max. 100mA) Integrated freewheeling diode	
8	OUT_1	OUT_5	Output	Open-drain output (max. 100mA) Integrated freewheeling diode	
9	OUT_2	OUT_6	Output Open-drain output (max. 100mA) Integrated freewheeling diode		
10	OUT_3	OUT_7	Output	Open-drain output (max. 1A) Integrated freewheeling diode	

SETTING THE STATUS OF GENERAL DIGITAL OUTPUTS EITHER TO LOW (0) OR TO HIGH (1)

Pin	I/O	I/O port	Command	Range
	Connector			
7	0	OUT_0	SIO 0, 2, <n></n>	1/0
8	0	OUT_1	SIO 1, 2, <n></n>	1/0
9	0	OUT_2	SIO 2, 2, <n></n>	1/0
10	0	OUT_3	SIO 3, 2, <n></n>	1/0
7	1	OUT_4	SIO 4, 2, <n></n>	1/0
8	1	OUT_5	SIO 5, 2, <n></n>	1/0
9	1	OUT_6	SIO 6, 2, <n></n>	1/0
10	1	OUT_7	SIO 7, 2, <n></n>	1/0

ADDRESSING ALL OUTPUT LINES WITH ONE SIO COMMAND:

Proceed as follows:

- Set the type parameter to 255 and the bank parameter to 2.
- The value parameter must then be set to a value between 0... 255, where every bit represents one output line.
- Furthermore, the value can also be set to -1. In this special case, the contents of the lower 8 bits of the accumulator are copied to the eight output pins.

Example:

Set all output pins high. *Mnemonic:* SIO 255, 2, 3

THE FOLLOWING PROGRAM WILL SHOW THE STATES OF THE INPUT LINES ON THE OUTPUT LINES:

Loop: GIO 255, 0 SIO 255, 2,-1 JA Loop

SWITCHING THE PULL-UP RESISTORS OF THE REFERENCE SWITCH INPUTS

SIO can be used to switch the pull-up resistors for all reference switch inputs on and off. Bank 0 is used for this purpose.

PIN ASSIGNMENT OF REFERENCE SWITCH CONNECTOR 0-5

Pin	Label	Description
3	REF_L	Input for reference / limit switch left
4	REF_R	Input for reference / limit switch right

Using the bitmask of this SIO command, the pull-up resistors can be switched on/off in two functional groups: bit 0 is used for motor 0, 1, and 2. Bit 1 is used for motor 3, 4, and 5. Setting the bit will switch on the pull-ups, clearing it will switch them off.

COMMAND FOR SWITCHING THE PULL-UP RESISTORS

Motor	Bit	Command	Range
0, 1, 2	0	SIO 0, 0, <bitmask></bitmask>	0 2
3, 4, 5	1	310 0, 0, bitmask>	U 5

4.6.15 GIO (get input /output)

With this command the status of the two available general purpose inputs of the module can be read out. The function reads a digital or analogue input port. Digital lines will read 0 and 1, while the ADC channels deliver their 12 bit result in the range of 0... 4095.

In *standalone mode* the requested value is copied to the *accumulator* (accu) for further processing purposes such as conditioned jumps.

In *direct mode* the value is only output in the *value* field of the reply, without affecting the accumulator. The actual status of a digital output line can also be read.

Internal function: the specified line is read.

Related commands: SIO, WAIT

Mnemonic: GIO <port number>, <bank number>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
15	<port number=""></port>	<bank number=""></bank>	don't care

Reply in direct mode:

STATUS	VALUE
100 - OK	<status of="" port="" the=""></status>

Example:

Get the analogue value of ADC channel 0 *Mnemonic:* GIO 0, 1

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target- address	Instruction Number	Type	Motor/ Bank	Operand Byte3	Operand Byte2	Operand Byte1	Operand Byte0
Value (hex)	\$01	\$0f	\$00	\$01	\$00	\$00	\$00	\$00

Reply:

Byte Index	0	1	2	3	4	5	6	7
Function	Host-	Target-	Status	Instructi	Operand	Operand	Operand	Operand
	address	address		on	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$02	\$01	\$64	\$0f	\$00	\$00	\$01	\$2e

Status = no error, value = 46

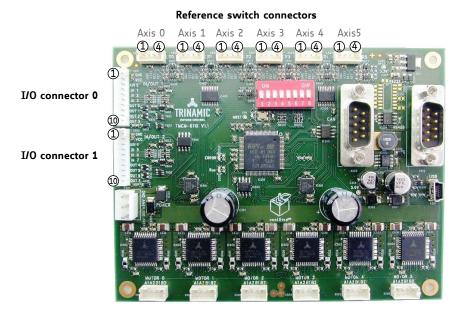


Figure 4.2 Connectors of TMCM-6110

I/O CONNECTOR 0 AND 1

Pin	Connector 0	Connector 1	Direction	Description	
1	GND	GND	Power (GND)	GND	
2	V _{DIGITAL}	V _{DIGITAL}	Power (supply output)	Connected to V _{DIGITAL} of Power connector	
3	AIN_O	AIN_4	Input	Dedicated analog input, input voltage range: 0 +10V, resolution: 12bit (0 4095)	
4	IN_1	IN_5	Input Digital input (+24V compatible)		
5	IN_2	IN_6	Input Digital input (+24V compatible)		
6	IN_3	IN_7	Input	Digital input (+24V compatible)	
7	OUT_0	OUT_4	Output	Open-drain output (max. 100mA) Integrated freewheeling diode	
8	OUT_1	OUT_5	Output	Open-drain output (max. 100mA) Integrated freewheeling diode	
9	OUT_2	OUT_6	Output	Open-drain output (max. 100mA) Integrated freewheeling diode	
10	OUT_3	OUT_7	Output	Open-drain output (max. 1A) Integrated freewheeling diode	

4.6.15.1 I/O bank 0 - Digital Inputs

The ADIN lines can be read as digital or analogue inputs at the same time. The analogue values can be accessed in bank 1.

Pin	I/O	I/O port	Command	Range
	Connector			
4	0	IN_1	GIO 1, 0	0/1
5	0	IN_2	GIO 2, 0	0/1
6	0	IN_3	GIO 3, 0	0/1
4	1	IN_5	GIO 5, 0	0/1
5	1	IN_6	GIO 6, 0	0/1
6	1	IN_7	GIO 7, 0	0/1

READING ALL DIGITAL INPUTS WITH ONE GIO COMMAND:

- Set the type parameter to 255 and the bank parameter to 0.
- In this case the status of all digital input lines will be read to the lower eight bits of the accumulator.

USE FOLLOWING PROGRAM TO REPRESENT THE STATES OF THE INPUT LINES ON THE OUTPUT LINES:

```
Loop: GIO 255, 0
SIO 255, 2,-1
JA Loop
```

4.6.15.2 I/O bank 1 - Analogue Inputs

The ADIN lines can be read back as digital or analogue inputs at the same time. The digital states can be accessed in bank 0.

Pin	I/O	I/O port	Command	Range
	Connector			
3	0	AIN_0	GIO 0, 1	0 4095
3	1	AIN_4	GIO 4, 1	0 4095

4.6.15.3 I/O bank 2 - States of Digital Outputs

The states of the OUT lines (that have been set by SIO commands) can be read back using bank 2.

Pin	I/O	I/O port	I/O port Command	
	Connector			
7	0	OUT_0	GIO 0, 2, <n></n>	1/0
8	0	OUT_1	GIO 1, 2, <n></n>	1/0
9	0	OUT_2	GIO 2, 2, <n></n>	1/0
10	0	OUT_3	GIO 3, 2, <n></n>	1/0
7	1	OUT_4	GIO 4, 2, <n></n>	1/0
8	1	OUT_5	GIO 5, 2, <n></n>	1/0
9	1	OUT_6	GIO 6, 2, <n></n>	1/0
10	1	OUT_7	GIO 7, 2, <n></n>	1/0

4.6.16 CALC (calculate)

A value in the accumulator variable, previously read by a function such as GAP (get axis parameter) can be modified with this instruction. Nine different arithmetic functions can be chosen and one constant operand value must be specified. The result is written back to the accumulator, for further processing like comparisons or data transfer.

Related commands: CALCX, COMP, JC, AAP, AGP, GAP, GGP, GIO

Mnemonic: CALC <operation>, <value>

Binary representation:

INSTRUCTION NO.	TYPE <operation></operation>	MOT/BANK	VALUE
19	0 ADD - add to accu	don't care	<operand></operand>
	1 SUB - subtract from accu		
	2 MUL - multiply accu by		
	3 DIV – divide accu by		
	4 MOD – modulo divide by		
	5 AND - logical and accu with		
	6 OR – logical or accu with		
	7 XOR – logical exor accu with		
	8 NOT – logical invert accu		
	9 LOAD - load operand to accu		

Example:

Multiply accu by -5000 *Mnemonic:* CALC MUL, -5000

Binary:

=								
Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$13	\$02	\$00	\$FF	\$FF	\$EC	\$78

Reply:

Byte Index	0	1	2	3	4	5	6	7
Function	Host-	Target-	Status	Instructi	Operand	Operand	Operand	Operand
	address	address		on	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$02	\$01	\$64	\$13	\$ff	\$ff	\$ec	\$78

Status = no error, value = -5000

4.6.17 COMP (compare)

The specified number is compared to the value in the accumulator register. The result of the comparison can for example be used by the conditional jump (JC) instruction.

This command is intended for use in standalone operation only.

Internal function: the specified value is compared to the internal "accumulator", which holds the value of a preceding "get" or calculate instruction (see GAP/GGP/GIO/CALC/CALCX). The internal arithmetic status flags are set according to the comparison result.

Related commands: JC (jump conditional), GAP, GGP, GIO, CALC, CALCX

Mnemonic: COMP <value>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
20	don't care	don't care	<comparison value=""></comparison>

Example:

Jump to the address given by the label when the position of motor is greater than or equal to 1000.

GAP 1, 2, 0 //get axis parameter, type: no. 1 (actual position), motor: 0, value: 0 don't care COMP 1000 //compare actual value to 1000

JC GE, Label //jump, type: 5 greater/equal, the label must be defined somewhere else in the program

Binary format of the COMP 1000 command:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$14	\$00	\$00	\$00	\$00	\$03	\$e8

4.6.18 JC (jump conditional)

The JC instruction enables a conditional jump to a fixed address in the TMCL program memory, if the specified condition is met. The conditions refer to the result of a preceding comparison. Please refer to COMP instruction for examples.

This function is for standalone operation only.

Internal function: the TMCL program counter is set to the passed value if the arithmetic status flags are in the appropriate state(s).

Related commands: JA, COMP, WAIT, CLE

Mnemonic: JC <condition>, <label>

Binary representation:

INSTRUCTION NO.	TYPE <condition></condition>	MOT/BANK	VALUE
21	0 ZE - zero	don't care	<jump address=""></jump>
	1 NZ - not zero		
	2 EQ - equal		
	3 NE - not equal		
	4 GT - greater		
	5 GE - greater/equal		
	6 LT - lower		
	7 LE - lower/equal		
	8 ETO - time out error		
	9 EAL – external alarm		
	12 ESD - shutdown error		

Example:

Jump to address given by the label when the position of motor is greater than or equal to 1000.

GAP 1, 0, 0 //get axis parameter, type: no. 1 (actual position), motor: 0, value: 0 don't care COMP 1000 //compare actual value to 1000

JC GE, Label //jump, type: 5 greater/equal

•••

Label: ROL 0, 1000

Binary format of JC GE, Label when Label is at address 10:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$15	\$05	\$00	\$00	\$00	\$00	\$0a

4.6.19 JA (jump always)

Jump to a fixed address in the TMCL program memory.

This command is intended for standalone operation only.

Internal function: the TMCL program counter is set to the passed value.

Related commands: JC, WAIT, CSUB

Mnemonic: JA <Label>

Binary representation:

I	NSTRUCTION NO.	TYPE	MOT/BANK	VALUE
	22	don't care	don't care	<jump address=""></jump>

Example: An infinite loop in TMCL

Loop: MVP ABS, 0, 10000 WAIT POS, 0, 0 MVP ABS, 0, 0

MVP ABS, 0, 0 WAIT POS, 0, 0

JA Loop //Jump to the label Loop

Binary format of JA Loop assuming that the label Loop is at address 20:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$16	\$00	\$00	\$00	\$00	\$00	\$14

4.6.20 CSUB (call subroutine)

This function calls a subroutine in the TMCL program memory.

This command is intended for standalone operation only.

Internal function: the actual TMCL program counter value is saved to an internal stack, afterwards overwritten with the passed value. The number of entries in the internal stack is limited to 8. This also limits nesting of subroutine calls to 8. The command will be ignored if there is no more stack space left.

Related commands: RSUB, JA

Mnemonic: CSUB <Label>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE	
23	don't care	don't care	<subroutine address=""></subroutine>	

Example: Call a subroutine

Loop: MVP ABS, 0, 10000

CSUB SubW //Save program counter and jump to label SubW

MVP ABS, 0, 0 JA Loop

SubW: WAIT POS, 0, 0

WAIT TICKS, 0, 50

RSUB //Continue with the command following the CSUB command

Binary format of the CSUB SubW command assuming that the label SubW is at address 100:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$17	\$00	\$00	\$00	\$00	\$00	\$64

4.6.21 RSUB (return from subroutine)

Return from a subroutine to the command after the CSUB command.

This command is intended for use in standalone mode only.

Internal function: the TMCL program counter is set to the last value of the stack. The command will be ignored if the stack is empty.

Related command: CSUB

Mnemonic: RSUB

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
24	don't care	don't care	don't care

Example: please see the CSUB example (section 4.6.20).

Binary format of RSUB:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$18	\$00	\$00	\$00	\$00	\$00	\$00

4.6.22 WAIT (wait for an event to occur)

This instruction interrupts the execution of the TMCL program until the specified condition is met.

This command is intended for standalone operation only.

THERE ARE FIVE DIFFERENT WAIT CONDITIONS THAT CAN BE USED:

- TICKS: Wait until the number of timer ticks specified by the <ticks> parameter has been reached.
- POS: Wait until the target position of the motor specified by the <motor> parameter has been reached. An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.
- REFSW: Wait until the reference switch of the motor specified by the <motor> parameter has been triggered. An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.
- LIMSW: Wait until a limit switch of the motor specified by the <motor> parameter has been triggered. An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.
- RFS: Wait until the reference search of the motor specified by the <motor> field has been reached. An optional timeout value (0 for no timeout) must be specified by the <ticks> parameter.

The timeout flag (ETO) will be set after a timeout limit has been reached. You can then use a JC ETO command to check for such errors or clear the error using the CLE command.

Internal function: the TMCL program counter is held until the specified condition is met.

Related commands: JC, CLE

Mnemonic: WAIT <condition>, <motor>, <ticks>

Binary representation:

INSTRUCTION NO.	TYPE <condition></condition>	MOT/BANK	VALUE
	0 TICKS - timer ticks*1	don't care	<no. of="" ticks*=""></no.>
	1 POS target position reached	<motor></motor>	<no. for="" of="" ticks*="" timeout="">,</no.>
	1 POS - target position reached	0 5	0 for no timeout
	2 REFSW – reference switch	<motor></motor>	<no. for="" of="" ticks*="" timeout="">,</no.>
27	2 KEFSW – Telefelice SWITCH	0 5	0 for no timeout
	3 LIMSW – limit switch	<motor></motor>	<no. for="" of="" ticks*="" timeout="">,</no.>
	J LINOW - WITH SWITCH	0 5	0 for no timeout
	4 RFS – reference search	<motor></motor>	<no. for="" of="" ticks*="" timeout="">,</no.>
	completed	0 5	0 for no timeout

^{*1} one tick is 10 milliseconds

Example:

Wait for motor 0 to reach its target position, without timeout *Mnemonic:* WAIT POS, 0, 0

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$1b	\$01	\$00	\$00	\$00	\$00	\$00

4.6.23 STOP (stop TMCL program execution)

This function stops executing a TMCL program. The host address and the reply are only used to transfer the instruction to the TMCL program memory.

The STOP command should be placed at the end of every standalone TMCL program. It is not to be used in direct mode.

Internal function: TMCL instruction fetching is stopped.

Related commands: none

Mnemonic: STOP

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE	
28	don't care	don't care	don't care	

Example:

Mnemonic: STOP

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$1c	\$00	\$00	\$00	\$00	\$00	\$00

4.6.24 SCO (set coordinate)

Up to 20 position values (coordinates) can be stored for every axis for use with the MVP COORD command. This command sets a coordinate to a specified value. Depending on the global parameter 84, the coordinates are only stored in RAM or also stored in the EEPROM and copied back on startup (with the default setting the coordinates are stored in RAM only).

Please note that the coordinate number 0 is always stored in RAM only.

Internal function: the passed value is stored in the internal position array.

Related commands: GCO, CCO, MVP

Mnemonic: SCO <coordinate number>, <motor>, <position>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
30	<coordinate number=""> 0 20</coordinate>	<motor> 0 5</motor>	<position> -2³¹ 2³¹-1</position>

Reply in direct mode:

STATUS	VALUE
100 – OK	don't care

Example:

Set coordinate #1 of motor to 1000 *Mnemonic:* SCO 1, 0, 1000

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target- address	Instruction Number	Туре	Motor/ Bank	Operand Byte3	Operand Byte2	Operand Bvte1	Operand Byte0
Value (hex)	\$01	\$1e	\$01	\$00	\$00	\$00	\$03	\$e8

Two special functions of this command have been introduced that make it possible to copy all coordinates or one selected coordinate to the EEPROM.

These functions can be accessed using the following special forms of the SCO command:

SCO 0, 255, 0 copies all coordinates (except coordinate number 0) from RAM to

the EEPROM.

SCO <coordinate number>, 255, 0 copies the coordinate selected by <coordinate number> to the

EEPROM. The coordinate number must be a value between 1 and

20.

4.6.25 GCO (get coordinate)

This command makes possible to read out a previously stored coordinate. In standalone mode the requested value is copied to the accumulator register for further processing purposes such as conditioned jumps. In direct mode, the value is only output in the value field of the reply, without affecting the accumulator. Depending on the global parameter 84, the coordinates are only stored in RAM or also stored in the EEPROM and copied back on startup (with the default setting the coordinates are stored in RAM, only).

Please note that the coordinate number 0 is always stored in RAM, only.

Internal function: the desired value is read out of the internal coordinate array, copied to the accumulator register and – in direct mode – returned in the *value* field of the reply.

Related commands: SCO, CCO, MVP

Mnemonic: GCO <coordinate number>, <motor>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
31	<coordinate number=""> 0 20</coordinate>	<motor> 0 5</motor>	don't care

Reply in direct mode:

STATUS	VALUE	
100 - OK	don't care	

Example:

Get motor value of coordinate 1

Mnemonic: GCO 1, 0

Binary:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$1f	\$01	\$00	\$00	\$00	\$00	\$00

Reply:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Target-	Status	Instructi	Operand	Operand	Operand	Operand
	address	address		on	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$02	\$01	\$64	\$0a	\$00	\$00	\$00	\$00

⇒ Value: 0

Two special functions of this command have been introduced that make it possible to copy all coordinates or one selected coordinate from the EEPROM to the RAM.

These functions can be accessed using the following special forms of the GCO command:

GCO 0, 255, 0 copies all coordinates (except coordinate number 0) from the

EEPROM to the RAM.

GCO <coordinate number>, 255, 0 copies the coordinate selected by <coordinate number> from the

EEPROM to the RAM. The coordinate number must be a value

between 1 and 20.

4.6.26 CCO (capture coordinate)

The actual position of the axis is copied to the selected coordinate variable. Depending on the global parameter 84, the coordinates are only stored in RAM or also stored in the EEPROM and copied back on startup (with the default setting the coordinates are stored in RAM only). Please see the SCO and GCO commands on how to copy coordinates between RAM and EEPROM.

Note, that the coordinate number 0 is always stored in RAM only.

Internal function: the selected (24 bit) position values are written to the 20 by 3 bytes wide coordinate

array.

Related commands: SCO, GCO, MVP

Mnemonic: CCO <coordinate number>, <motor>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
32	<coordinate number=""> 0 20</coordinate>	<motor> 0 5</motor>	don't care

Reply in direct mode:

STATUS	VALUE	
100 – OK	don't care	

Example:

Store current position of the axis 0 to coordinate 3 *Mnemonic:* CCO 3, 0

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$20	\$03	\$00	\$00	\$00	\$00	\$00

4.6.27 ACO (accu to coordinate)

With the ACO command the actual value of the accumulator is copied to a selected coordinate of the motor. Depending on the global parameter 84, the coordinates are only stored in RAM or also stored in the EEPROM and copied back on startup (with the default setting the coordinates are stored in RAM only).

Please note also that the coordinate number 0 is always stored in RAM only. For information about storing coordinates refer to the SCO command.

Internal function: the actual value of the accumulator is stored in the internal position array.

Related commands: GCO, CCO, MVP COORD, SCO

Mnemonic: ACO <coordinate number>, <motor>

Binary representation:

INSTRUCTION I	NO.	TYPE	MOT/BANK	VALUE
39	<coord< th=""><th>inate number> 0 20</th><th><motor> 0 5</motor></th><th>don't care</th></coord<>	inate number> 0 20	<motor> 0 5</motor>	don't care

Reply in direct mode:

STATUS	VALUE	
100 - OK	don't care	

Example:

Copy the actual value of the accumulator to coordinate 1 of motor 0 *Mnemonic:* ACO 1, 0

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$27	\$01	\$00	\$00	\$00	\$00	\$00

4.6.28 CALCX (calculate using the X register)

This instruction is very similar to CALC, but the second operand comes from the X register. The X register can be loaded with the LOAD or the SWAP type of this instruction. The result is written back to the accumulator for further processing like comparisons or data transfer.

Related commands: CALC, COMP, JC, AAP, AGP

Mnemonic: CALCX <operation>

Binary representation:

INSTRUCTION NO.	TYPE <operation></operation>	MOT/BANK	VALUE
33	0 ADD – add X register to accu	don't care	don't care
	1 SUB – subtract X register from accu		
	2 MUL – multiply accu by X register		
	3 DIV – divide accu by X-register		
	4 MOD – modulo divide accu by x-register		
	5 AND – logical and accu with X-register		
	6 OR – logical or accu with X-register		
	7 XOR – logical exor accu with X-register		
	8 NOT – logical invert X-register		
	9 LOAD – load accu to X-register		
	10 SWAP – swap accu with X-register		

Example:

Multiply accu by X-register Mnemonic: CALCX MUL

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$21	\$02	\$00	\$00	\$00	\$00	\$00

4.6.29 AAP (accumulator to axis parameter)

The content of the accumulator register is transferred to the specified axis parameter. For practical usage, the accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified by the CALC or CALCX (calculate) instruction.

Related commands: AGP, SAP, GAP, SGP, GGP, GIO, GCO, CALC, CALCX

Mnemonic: AAP <parameter number>, <motor>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
34	<parameter number=""></parameter>	<motor> 0 5</motor>	<don't care=""></don't>

Reply in direct mode:

STATUS	VALUE
100 - OK	don't care

For a table with parameters and values which can be used together with this command please refer to chapter 5.

Example:

Positioning motor by a potentiometer connected to the analogue input #0:

Start: GIO 0,1 // get value of analogue input line 0

CALC MUL, 4 // multiply by 4

AAP 0,0 // transfer result to target position of motor 0

JA Start // jump back to start

Binary format of the AAP 0,0 command:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$22	\$00	\$00	\$00	\$00	\$00	\$00

4.6.30 AGP (accumulator to global parameter)

The content of the accumulator register is transferred to the specified global parameter. For practical usage, the accumulator has to be loaded e.g. by a preceding GAP instruction. The accumulator may have been modified by the CALC or CALCX (calculate) instruction.

For a table with parameters and bank numbers which can be used together with this command please refer to chapter 6.

Note that the global parameters in bank 0 are EEPROM-only and thus should not be modified automatically by a standalone application.

Related commands: AAP, SGP, GGP, SAP, GAP, GIO

Mnemonic: AGP <parameter number>, <bank number>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
35	<parameter number=""></parameter>	<bank number=""></bank>	don't care

Reply in direct mode:

STATUS	VALUE
100 – OK	don't care

Example:

Copy accumulator to TMCL user variable #3 *Mnemonic:* AGP 3, 2

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$23	\$03	\$02	\$00	\$00	\$00	\$00

4.6.31 CLE (clear error flags)

This command clears the internal error flags.

This command is intended for use in standalone mode only and must not be used in direct mode.

THE FOLLOWING ERROR FLAGS CAN BE CLEARED BY THIS COMMAND (DETERMINED BY THE <FLAG> PARAMETER):

ALL: clear all error flags.

- ETO: clear the timeout flag.

- EAL: clear the external alarm flag

- EDV: clear the deviation flag

- EPO: clear the position error flag

Related commands: JC

Mnemonic: CLE <flags>

where <flags>=ALL|ETO|EDV|EPO

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
36	0 - (ALL) all flags 1 - (ETO) timeout flag 2 - (EAL) alarm flag 3 - (EDV) deviation flag 4 - (EPO) position flag	don't care	don't care

Example:

Reset the timeout flag Mnemonic: CLE ETO

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$24	\$01	\$00	\$00	\$00	\$00	\$00

4.6.32 VECT (set interrupt vector)

The VECT command defines an interrupt vector. It needs an interrupt number and a label as parameter (like in JA, JC and CSUB commands).

This label must be the entry point of the interrupt handling routine.

Related commands: EI, DI, RETI

Mnemonic: VECT <interrupt number>, <label>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
37	<interrupt number=""></interrupt>	don't care	<label></label>

The following table shows all interrupt vectors that can be used.

Interrupt number	Interrupt type
0	Timer 0
1	Timer 1
2	Timer 2
3	Target position reached axis 0
4	Target position reached axis 1
5	Target position reached axis 2
6	Target position reached axis 3
7	Target position reached axis 4
8	Target position reached axis 5
15	stallGuard axis 0
16	stallGuard axis 1
17	stallGuard axis 2
18	stallGuard axis 3
19	stallGuard axis 4
20	stallGuard axis 5
27	Left stop switch axis 0
28	Right stop switch axis 0
29	Left stop switch axis 1
30	Right stop switch axis 1
31	Left stop switch axis 2
32	Right stop switch axis 2
33	Left stop switch axis 3
34	Right stop switch axis 3
35	Left stop switch axis 4
36	Right stop switch axis 4
37	Left stop switch axis 5
38	Right stop switch axis 5
39	Input change 0
40	Input change 1
41	Input change 2
42	Input change 3
43	Input change 4
44	Input change 5
45	Input change 6
46	Input change 7
255	Global interrupts

Example:

Define interrupt vector at target position 500 VECT 3, 500

Binary format of VECT:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$25	\$03	\$00	\$00	\$00	\$01	\$F4

4.6.33 EI (enable interrupt)

The EI command enables an interrupt. It needs the interrupt number as parameter. Interrupt number 255 globally enables interrupts.

Related command: DI, VECT, RETI

Mnemonic: EI <interrupt number>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
25	<interrupt number=""></interrupt>	don't care	don't care

The following table shows all interrupt vectors that can be used.

Interrupt number	Interrupt type
0	Timer 0
1	Timer 1
2	Timer 2
3	Target position reached axis 0
4	Target position reached axis 1
5	Target position reached axis 2
6	Target position reached axis 3
7	Target position reached axis 4
8	Target position reached axis 5
15	stallGuard axis 0
16	stallGuard axis 1
17	stallGuard axis 2
18	stallGuard axis 3
19	stallGuard axis 4
20	stallGuard axis 5
27	Left stop switch axis 0
28	Right stop switch axis 0
29	Left stop switch axis 1
30	Right stop switch axis 1
31	Left stop switch axis 2
32	Right stop switch axis 2
33	Left stop switch axis 3
34	Right stop switch axis 3
35	Left stop switch axis 4
36	Right stop switch axis 4
37	Left stop switch axis 5
38	Right stop switch axis 5
39	Input change 0
40	Input change 1
41	Input change 2
42	Input change 3
43	Input change 4
44	Input change 5
45	Input change 6
46	Input change 7
255	Global interrupts

Examples:

Enable interrupts globally EI, 255

Binary format of EI:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$19	\$FF	\$00	\$00	\$00	\$00	\$00

Enable interrupt when target position reached EI, 3

Binary format of EI:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$19	\$03	\$00	\$00	\$00	\$00	\$00

4.6.34 DI (disable interrupt)

The DI command disables an interrupt. It needs the interrupt number as parameter. Interrupt number 255 globally disables interrupts.

Related command: EI, VECT, RETI

Mnemonic: DI <interrupt number>

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
26	<interrupt number=""></interrupt>	don't care	don't care

The following table shows all interrupt vectors that can be used.

Interrupt number	Interrupt type
0	Timer 0
1	Timer 1
2	Timer 2
3	Target position reached axis 0
4	Target position reached axis 1
5	Target position reached axis 2
6	Target position reached axis 3
7	Target position reached axis 4
8	Target position reached axis 5
15	stallGuard axis 0
16	stallGuard axis 1
17	stallGuard axis 2
18	stallGuard axis 3
19	stallGuard axis 4
20	stallGuard axis 5
27	Left stop switch axis 0
28	Right stop switch axis 0
29	Left stop switch axis 1
30	Right stop switch axis 1
31	Left stop switch axis 2
32	Right stop switch axis 2
33	Left stop switch axis 3
34	Right stop switch axis 3
35	Left stop switch axis 4
36	Right stop switch axis 4
37	Left stop switch axis 5
38	Right stop switch axis 5
39	Input change 0
40	Input change 1
41	Input change 2
42	Input change 3
43	Input change 4
44	Input change 5
45	Input change 6
46	Input change 7
255	Global interrupts

Examples:

Disable interrupts globally DI, 255

Binary format of DI:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$1A	\$FF	\$00	\$00	\$00	\$00	\$00

Disable interrupt when target position reached DI, ${\bf 3}$

Binary format of DI:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$1A	\$03	\$00	\$00	\$00	\$00	\$00

4.6.35 RETI (return from interrupt)

This command terminates the interrupt handling routine, and the normal program execution continues.

At the end of an interrupt handling routine the RETI command must be executed.

Internal function: the saved registers (A register, X register, flags) are copied back. Normal program execution continues.

Related commands: EI, DI, VECT

Mnemonic: RETI

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
38	don't care	don't care	don't care

Example: Terminate interrupt handling and continue with normal program execution

RETI

Binary format of RETI:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Instruction	Type	Motor/	Operand	Operand	Operand	Operand
	address	Number		Bank	Byte3	Byte2	Byte1	Byte0
Value (hex)	\$01	\$26	\$00	\$00	\$00	\$00	\$01	\$00

4.6.36 Customer Specific TMCL Command Extension (user function)

The user definable functions UFO... UF7 are predefined functions without topic for user specific purposes. A user function (UF) command uses three parameters. Please contact TRINAMIC for a customer specific programming.

Internal function: Call user specific functions implemented in C by TRINAMIC.

Related commands: none

Mnemonic: UF0... UF7 <parameter number>

Binary representation:

INSTRUCTION NO.	ТҮРЕ	MOT/BANK	VALUE
64 71	user defined	user defined	user defined

Reply in direct mode:

Byte Index	0	1	2	3	4	5	6	7
Function	Target-	Target-	Status	Instruction	Operand	Operand	Operand	Operand
	address	address			Byte3	Byte2	Byte1	Byte0
Value (hex)	\$02	\$01	user	64 71	user	user	user	user
			defined		defined	defined	defined	defined

4.6.37 Request Target Position Reached Event

This command is the only exception to the TMCL protocol, as it sends two replies: One immediately after the command has been executed (like all other commands also), and one additional reply that will be sent when the motor has reached its target position.

This instruction can only be used in direct mode (in standalone mode, it is covered by the WAIT command) and hence does not have a mnemonic.

Internal function: send an additional reply when the motor has reached its target position

Mnemonic: ---

Binary representation:

INSTRUCTION NO.	TYPE	MOT/BANK	VALUE
138	don't care	don't care	<motor bit="" mask=""></motor>

The value field contains a bit mask. Every bit stands for one motor:

bit 0 = motor 0

bit 1 = motor 1

bit 2 = motor 2

bit 3 = motor 3

bit 4 = motor 4

bit 5 = motor 5

Reply in direct mode (right after execution of this command):

Byte Index	0	1	2	3	4	5	6	7
Function	Target- address	Target- address	Status	Instruction	Operand Byte3	Operand Byte2	Operand Byte1	Operand Byte0
Value (hex)	\$02	\$01	100	138	\$00	\$00	\$00	Motor bit mask

Additional reply in direct mode (after motors have reached their target positions):

Byte Index	0	1	2	3	4	5	6	7
Function	Target- address	Target- address	Status	Instruction	Operand Byte3	Operand Byte2	Operand Byte1	Operand Byte0
Value (hex)	\$02	\$01	128	138	\$00	\$00	\$00	Motor bit mask

4.6.38 BIN (return to binary mode)

This command can only be used in ASCII mode. It quits the ASCII mode and returns to binary mode.

Related Commands: none

Mnemonic: BIN

Binary representation: This command does not have a binary representation as it can only be used in

ASCII mode.

4.6.39 TMCL Control Functions

There are several TMCL control functions, but for the user are only 136 and 137 interesting. Other control functions can be used with axis parameters.

Instruction number	Type	Command	Description
136	0 – string 1 – binary	Firmware version	Get the module type and firmware revision as a string or in binary format. (Motor/Bank and Value are ignored.)
137	don't care	Reset to factory defaults	Reset all settings stored in the EEPROM to their factory defaults This command does not send back a reply. Value must be 1234

FURTHER INFORMATION ABOUT COMMAND 136

- Type set to 0 - reply as a string:

Byte index	Contents
1	Host address
2 9	Version string (8 characters, e.g. 6110V100)

There is no checksum in this reply format!

- Type set to 1 - version number in binary format:

The version number is output in the value field of the reply in the following way:

Byte index in value field	Contents
1	17
2	DE
3	Type number, low byte
4	Type number, high byte

5 Axis Parameters

The following sections describe all axis parameters that can be used with the SAP, GAP, AAP, STAP, and RSAP commands.

MEANING OF THE LETTERS IN COLUMN ACCESS

Access	Related	Description
type	command(s)	
R	GAP	Parameter readable
W	SAP, AAP	Parameter writable
E	STAP, RSAP	Parameter automatically restored from EEPROM after reset or power-on. These parameters can be stored permanently in EEPROM using STAP command and also explicitly restored (copied back from EEPROM into RAM) using RSAP.

Basic parameters should be adjusted to motor / application for proper module operation.
Parameters for the more experienced user – please do not change unless you are absolutely sure.

Number	Axis Parameter	Description	Range [Unit]	Acc.
0	Target (next)	The desired position in position mode (see ramp mode, no. 138).	-2 ³¹ 2 ³¹ -1 [µsteps]	RW
1	Actual position	The current position of the motor. Should only be overwritten for reference point setting.	-2 ³¹ 2 ³¹ -1	RW
2	Target (next) speed	The desired speed in velocity mode (see ramp mode, no. 138). In position mode, this parameter is set by hardware: to the maximum speed during acceleration, and to zero during deceleration and rest.		RW
3	Actual speed	The current rotation speed.	$\frac{\pm 2047}{\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\mu \text{steps}}{\text{sec}}\right]}$	RW
4	Maximum positioning speed	Should not exceed the physically highest possible value. Adjust the pulse divisor (no. 154), if the speed value is very low (<50) or above the upper limit. See TMC 429 datasheet for calculation of physical units.		RWE
5	Maximum acceleration	The limit for acceleration (and deceleration). Changing this parameter requires recalculation of the acceleration factor (no. 146) and the acceleration divisor (no. 137), which is done automatically. See TMC 429 datasheet for calculation of physical units.	0 2047*	RWE

Number	Axis Parameter	Description	Range [Unit]	Acc.
6	Absolute max. current (CS / Current Scale)	The maximum value is 255. This value means 100% of the maximum current of the module. The current adjustment is within the range 0 255 and can be adjusted in 32 steps.	0 255 $I_{peak} = < value > \times \frac{1.6A}{255}$	RWE
		0 7 7987 160 167 240 247 8 15 88 95 168 175 248 255 16 23 96 103 176 183 24 31 104 111 184 191 32 39 112 119 192 199 40 47 120 127 200 207 48 55 128 135 208 215 56 63 136 143 216 223 64 71 144 151 224 231 72 79 152 159 232 239 The most important motor setting, since too high values might cause motor damage!		
7	Standby current	The current limit two seconds after the moto has stopped.	$I_{peak} = < value > \times \frac{1.6A}{255}$ $I_{RMS} = < value > \times \frac{1.1A}{255}$	RWE
8	Target pos. reached	Indicates that the actual position equals the target position.	0/1	R
9	Ref. switch status	The logical state of the reference home switch.	0/1	R
10	Right limit switch status	The logical state of the (right) limit switch.	0/1	R
11	Left limit switch status	The logical state of the left limit switch (in three switch mode)	0/1	R
12	Right limit switch disable	If set, deactivates the stop function of the right switch	0/1	RWE
13	Left limit switch disable	Deactivates the stop function of the lef switch resp. reference switch if set.	0/1	RWE
130	Minimum speed	Should always be set 1 to ensure exacreaching of the target position. Do no change!		RWE
135	Actual acceleration	The current acceleration (read only).	0 2047*	R
138	Ramp mode	Automatically set when using ROR, ROL, MST and MVP. 0: position mode. Steps are generated, when the parameters actual position and targe position differ. Trapezoidal speed ramps are provided. 2: velocity mode. The motor will rur continuously and the speed will be changed with constant (maximum) acceleration, if the parameter target speed is changed. For special purposes, the soft mode (value 1 with exponential decrease of speed can be selected.		RWE

Number	Axis Parameter	Description	Range [Unit]		
140	Microstep	0 full step	0 8	RWE	
	resolution	1 half step			
		2 4 microsteps			
		3 8 microsteps			
		4 16 microsteps			
		5 32 microsteps			
		6 64 microsteps			
		7 128 microsteps			
		8 256 microsteps			
141	Reference switch	For three-switch mode: a position range,	0 4095	RW	
141	tolerance	where an additional switch (connected to	[µsteps]	KVV	
	toterance		[µsteps]		
1.60	C-4 fl	the REFL input) won't cause motor stop.	0/1	DME	
149	Soft stop flag	If cleared, the motor will stop immediately	0/1	RWE	
		(disregarding motor limits), when the			
450	D 1: :	reference or limit switch is hit.	0 12	DIA/E	
153	Ramp divisor	The exponent of the scaling factor for the	0 13	RWE	
		ramp generator- should be de/incremented			
		carefully (in steps of one).			
154	Pulse divisor	The exponent of the scaling factor for the	0 13	RWE	
		pulse (step) generator - should be			
	_	de/incremented carefully (in steps of one).			
160	Step	Step interpolation is supported with a 16	0/1	RW	
	interpolation	microstep setting only. In this setting, each			
	enable	step impulse at the input causes the			
		execution of 16 times 1/256 microsteps. This			
		way, a smooth motor movement like in 256			
		microstep resolution is achieved.			
		0 - step interpolation off			
		1 - step interpolation on			
161	Double step	Every edge of the cycle releases a	0/1	RW	
	enable	step/microstep. It does not make sense to			
		activate this parameter for internal use.			
		Double step enable can be used with Step/Dir			
		interface.			
		0 - double step off			
		1 - double step on			
162	Chopper blank	Selects the comparator blank time. This time	0 3	RW	
	time	needs to safely cover the switching event and			
		the duration of the ringing on the sense			
		resistor. For low current drivers, a setting of 1			
		or 2 is good.			
163	Chopper mode	Selection of the chopper mode:	0/1	RW	
		0 - spread cycle			
		1 – classic const. off time			
164	Chopper	Hysteresis decrement setting. This setting	0 3	RW	
	hysteresis	determines the slope of the hysteresis during			
	decrement	on time and during fast decay time.			
		0 – fast decrement			
		3 – very slow decrement			
165	Chopper	Hysteresis end setting. Sets the hysteresis end	-3 12	RW	
103	hysteresis end	value after a number of decrements.	J 1L	1.77	
	liysteresis ellu	Decrement interval time is controlled by axis			
		•			
		parameter 164.			
		-31 negative hysteresis end setting			
		0 zero hysteresis end setting			
		1 12 positive hysteresis end setting			

Number	Axis Parameter	Description	Range [Unit]	Acc.
166	Chopper hysteresis start	Hysteresis start setting. Please remark, that this value is an offset to the hysteresis end value.	0 8	RW
167	Chopper off time	The off time setting controls the minimum chopper frequency. An off time within the range of $5\mu s$ to $20\mu s$ will fit. Off time setting for constant t_{Off} chopper: $N_{CLK}=12+32*t_{OFF}$ (Minimum is 64 clocks) Setting this parameter to zero completely disables all driver transistors and the motor can free-wheel.	0 / 2 15	RW
168	smartEnergy current minimum (SEIMIN)	Sets the lower motor current limit for coolStep operation by scaling the CS (Current Scale, see axis parameter 6) value. minimum motor current: 0 - 1/2 of CS 1 - 1/4 of CS	0/1	RW
169	smartEnergy current down step	Sets the number of stallGuard2 readings above the upper threshold necessary for each current decrement of the motor current. Number of stallGuard2 measurements per decrement: Scaling: 0 3: 32, 8, 2, 1 0: slow decrement 3: fast decrement	0 3	RW
170	smartEnergy hysteresis	Sets the distance between the lower and the upper threshold for stallGuard2 reading. Above the upper threshold the motor current becomes decreased. Hysteresis: (smartEnergy hysteresis value + 1) * 32 Upper stallGuard2 threshold: (smartEnergy hysteresis start + smartEnergy hysteresis + 1) * 32	0 15	RW
171	smartEnergy current up step	Sets the current increment step. The current becomes incremented for each measured stallGuard2 value below the lower threshold (see smartEnergy hysteresis start). current increment step size: Scaling: 0 3: 1, 2, 4, 8 0: slow increment 3: fast increment / fast reaction to rising load		RW
172	smartEnergy	The lower threshold for the stallGuard2 value	0 15	RW
	hysteresis start	(see smart Energy current up step).		

Number	Axis Parameter	Description	Range [Unit]	Acc.
173	stallGuard2 filter	Enables the stallGuard2 filter for more	0/1	RW
	enable	precision of the measurement. If set, reduces		
		the measurement frequency to one		
		measurement per four fullsteps.		
		In most cases it is expedient to set the		
		filtered mode before using coolStep.		
		Use the standard mode for step loss		
		detection. 0 – standard mode		
		1 - filtered mode		
174	stallGuard2	This signed value controls stallGuard2	-64 63	RW
	threshold	threshold level for stall output and sets the	0 1 0 J	
		optimum measurement range for readout. A		
		lower value gives a higher sensitivity. Zero is		
		the starting value. A higher value makes		
		stallGuard2 less sensitive and requires more		
		torque to indicate a stall.		
		0 Indifferent value		
		1 63 less sensitivity		
		-1 - higher sensitivity		
		64		
175	Slope control	Determines the slope of the motor driver	0 3	RW
	high side	outputs. Set to 2 or 3 for this module or		
		rather use the default value.		
		0: lowest slope		
		3: fastest slope		
176	slope control	Determines the slope of the motor driver	0 3	RW
	low side	outputs. Set identical to slope control high		
		side.		
177	Short protection	0: Short to GND protection is on	0/1	RW
	disable	1: Short to GND protection is disabled		
470	C	Use default value!		DIA
178	Short detection	0: 3.2µs	0 3	RW
	timer	1: 1.6µs		
		2: 1.2µs 3: 0.8µs		
		Use default value!		
179	Vsense	sense resistor voltage based current scaling	0/1	RW
1/7	VSelise	0: Full scale sense resistor voltage is 1/18 VDD	0/1	KVV
		1: Full scale sense resistor voltage is 1/36 VDD		
		(refers to a current setting of 31 and DAC		
		value 255)		
		Use default value. Do not change!		
180	smartEnergy	This status value provides the actual motor	0 31	RW
	actual current	current setting as controlled by coolStep. The		
		value goes up to the CS value and down to		
		the portion of CS as specified by SEIMIN.		
		Actual motor current scaling factor:		
		0 31: 1/32, 2/32, 32/32		
104	C		0 20/7	DVA
181	Stop on stall	Below this speed motor will not be stopped.	0 2047	RW
		Above this speed motor will stop in case	$\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\mu \text{steps}}{\text{sec}}\right]$	
103		stallGuard2 load value reaches zero.		DIA
182	smartEnergy	Above this speed coolStep becomes enabled.	0 2047	RW
	threshold speed		$\left[\frac{16\text{MHz}}{65536} \cdot 2^{\text{PD}} \frac{\text{µsteps}}{\text{sec}}\right]$	1

Number	Axis Parameter	Description	Range [Unit]	Acc.
183	smartEnergy	Sets the motor current which is used below	0 255	RW
	slow run current	the threshold speed.	$I_{peak} = < value > \times \frac{1.6A}{255}$	
			$I_{peak} = Value > \lambda $ 255	
			1.1 <i>A</i>	
			$I_{RMS} = \langle value \rangle \times \frac{1.1A}{255}$	
184	Random chopper	Enable randomizing the slow decay phase	0/1	RWE
	off time	duration:		
		0: Chopper off time is fixed (see axis		
		parameter 167).		
		1: Random mode. Chopper off time is		
		modulated by dNCLK= -12 +3 clocks.		
193	Reference search	1 search left stop switch only	1 8	RWE
	mode	2 search right stop switch, then search		
		left stop switch		
		3 search right stop switch, then search		
		left stop switch from both sides		
		4 search left stop switch from both sides		
		·		
		5 search home switch in negative direction, reverse the direction when		
		left stop switch reached 6 search home switch in positive		
		The second secon		
		direction, reverse the direction when		
		right stop switch reached		
		7 search home switch in negative		
		direction, ignore end switches		
		8 search home switch in positive		
		direction, ignore end switches		
		Additional functions:		
		- Add 128 to a mode value for inverting the		
		home switch polarity (can be used with		
		mode 5 8).		
		- Add 64 to a mode for exchanging left and		
		right stop switches (can be used with		
		mode 1 4).		
194	Reference search	For the reference search this value directly	0 2047	RWE
	speed	specifies the search speed.		
195	Reference switch	Similar to parameter no. 194, the speed for	0 2047	RWE
	speed	the switching point calibration can be		
		selected.		
196	Reference switch	This parameter provides the distance between	0 2.147.483.647	R
	distance	the end switches after executing the RFS		
		command (mode 2 or 3).		
197	Last reference	Reference search: the last position before	-2 ³¹ 2 ³¹ -1	R
	position	setting the counter to zero can be read out.	[µsteps]	
200	Boost current	Current used for acceleration and deceleration	0 255	RWE
		phases.	$I_{peak} = < value > \times \frac{1.6A}{255}$	
		If set to 0 the same current as set by axis	255	
		parameter 6 will be used.	_ 1.1 <i>A</i>	
			$I_{RMS} = \langle value \rangle \times \frac{1.1A}{255}$	
204	Freewheeling	Time after which the power to the motor will	0 65535	RWE
	delay	be cut when its velocity has reached zero.	0 = never	
			[msec]	
206	Actual load value	Readout of the actual load value used for stall	0 1023	R
		detection (stallGuard2).		
	*	-		•

Number	Axis Parameter	Descript	tion	Range [Unit]	Acc.
208	TMC260 driver	Bit 0	stallGuard2 status	0/1	R
	error flags		(1: threshold reached)		
		Bit 1	Overtemperature		
			(1: driver is shut down due to		
			overtemperature)		
		Bit 2	Pre-warning overtemperature		
			(1: t reshold is exceeded)		
		Bit 3	Short to ground A		
			(1: short condition dete ted, driver		
			currently shut down)		
		Bit 4	Short to ground B		
			(1: short condition detected, driver		
			currently shut down)		
		Bit 5	Open load A		
			(1: no chopper event has		
			happened during the last period		
			with constant coil polarity)		
		Bit 6	Open load B		
			(1: no chopper event has		
			happened during the last period		
			with constant coil polarity)		
		Bit 7	Stand still		
			(1: no step impulse occurred on		
			the step input during the last 2^20		
			clock cycles)		
		Please r	efer to the TMC260 Datasheet for more		
		informa	-		
213	Group index	All mot	ors on the module which have the	0 255	RW
		same	group index will get the same		
		commar	nds when a ROL, ROR, MST, MVP or		
		RFS is is	sued for one of these motors.		
214	Power down	Standsti	ll period before the current is changed	1 65535	RWE
	delay		standby current. The standard value		
			value equates 2000msec).		

* Unit of acceleration: $\frac{16MHz^2}{536870912 \cdot 2^{puls_divisor} + ramp_divisor} = \frac{\text{microsteps}}{\text{sec}^2}$

5.1 stallGuard2 Related Parameters

The module is equipped with TMC260 motor driver chip. The TMC260 features load measurement that can be used for stall detection. stallGuard2 delivers a sensorless load measurement of the motor as well as a stall detection signal. The measured value changes linear with the load on the motor in a wide range of load, velocity and current settings. At maximum motor load the stallGuard2 value goes to zero. This corresponds to a load angle of 90° between the magnetic field of the stator and magnets in the rotor. This also is the most energy efficient point of operation for the motor.

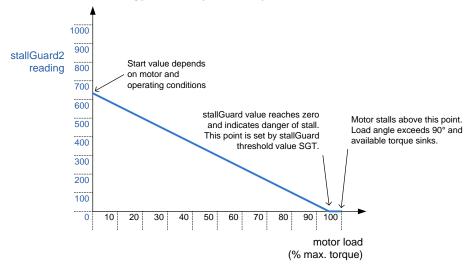


Figure 5.1 Principle function of stallGuard2

Stall detection means that the motor will be stopped when the load gets too high. This level is set using axis parameter 174 (stallGuard2 threshold). In order to exclude e.g. resonances during motor acceleration and deceleration phases it is also possible to set a minimum speed for motor being stopped due to stall detection using axis parameter #181. Stall detection can also be used for finding the reference point.

Do not use RFS in this case.

PARAMETERS NEEDED FOR ADJUSTING THE STALLGUARD2 FEATURE

Number	Axis Parameter	Description	n			
6	Absolute max.	The maxin	num value is	255. This va	lue means 1	.00% of the maximum current of
	current	the modu	the module. The current adjustment is within the range 0 255 and can be			
	(CS / Current	adjusted i	n 32 steps.			
	Scale)	0 7	7987	160 167	240 247	
		8 15	88 95	168 175	248 255	
		16 23	96 103	176 183		
		24 31	104 111	184 191		
		32 39	112 119	192 199		
		40 47	120 127	200 207		
		48 55	128 135	208 215		
		56 63	136 143	216 223		
		64 71	144 151	224 231		
		72 79	152 159	232 239		
		The most damage!	important m	otor setting,	since too h	igh values might cause motor
173	stallGuard2 filter	Enables th	ne stallGuard	12 filter for	more precis	ion of the measurement. If set,
	enable	reduces th	ie measurem	ent frequenc	y to one me	easurement per four fullsteps.
					-	mode before using coolStep.
				e for step los	ss detection.	
		0 – standa	ırd mode			
		1 - filtered	d mode			

Number	Axis Parameter	Description				
174	stallGuard2	This signed value controls stallGuard2 threshold level for stall output and sets				
	threshold	the optimum measurement range for readout. A lower value gives a higher				
		sensitivity. Zero is the starting value. A higher value makes stallGuard2 less				
		sensitive and requires more torque to indicate a stall.				
		0 Indifferent value				
		1 63 less sensitivity				
		-164 higher sensitivity				
181	Stop on stall	Below this speed motor will not be stopped. Above this speed motor will stop				
		in case stallGuard2 load value reaches zero.				
206	Actual load value	Readout of the actual load value used for stall detection (stallGuard2).				

In this chapter only basic axis parameters are mentioned which concern stallGuard2. The complete list of axis parameters in chapter 5 contains further parameters which offer more configuration possibilities.

5.2 coolStep Related Parameters

The figure below gives an overview of the coolStep related parameters. Please have in mind that the figure shows only one example for a drive. There are parameters which concern the configuration of the current. Other parameters are for velocity regulation and for time adjustment.

It is necessary to identify and configure the thresholds for current (I6, I7 and I183) and velocity (V182). Furthermore the stallGuard2 feature has to be adjusted and enabled (SG170 and SG181).

The reduction or increasing of the current in the coolStep area (depending on the load) has to be configured with parameters I169 and I171.

In this chapter only basic axis parameters are mentioned which concern coolStep and stallGuard2. The complete list of axis parameters in chapter 5 contains further parameters which offer more configuration possibilities.

coolStep™ adjustment points and thresholds

Velocity Current **I**6 The current depends on the load of the motor. I183 **SG**170 **SG181** I6/2* V182 I_7 T214 coolStep™ area area without coolStep™

I123 Current and parameter

V₁₂₃ Velocity and parameter

T₁₂₃ Time parameter

SG123 stallGuard2™ parameter

* The lower threshold of the coolStep™ current can be adjusted up to I6/4. Refer to parameter 168.

PARAMETERS NEEDED FOR ADJUSTING THE COOLSTEP FEATURE

Number	Axis parameter	Description			
	-	The maximum value is 255. This value means 100% of the			
		maximum current of the module. The current adjustment is within the range 0 255 and can be adjusted in 32 steps.			
		0 7 7987 160 167 240 247			
		8 15 88 95 168 175 248 255			
		16 23 96 103 176 183			
		24 31			
4	Absolute max. current	32 39 112 119 192 199			
6	(CS / Current Scale)	40 47 120 127 200 207			
		48 55 128 135 208 215			
		56 63 136 143 216 223			
		64 71			
		72 79 152 159 232 239			
		72 79 132 139 232 239 			
		The most important motor setting, since too high values might			
		cause motor damage!			
7	Standby current	The current limit two seconds after the motor has stopped.			
		Sets the lower motor current limit for coolStep operation by			
	smartEnergy current minimum	scaling the CS (Current Scale, see axis parameter 6) value.			
168	(SEIMIN)	Minimum motor current:			
	(321.111)	0 – 1/2 of CS			
		1 – 1/4 of CS			
		Sets the number of stallGuard2 readings above the upper			
		threshold necessary for each current decrement of the motor			
169	smartEnergy current down	current. Number of stallGuard2 measurements per decrement: Scaling: 0 3: 32, 8, 2, 1			
	step	0: slow decrement			
		3: fast decrement			
		Sets the current increment step. The current becomes			
		incremented for each measured stallGuard2 value below the			
		lower threshold (see smartEnergy hysteresis start).			
171	smartEnergy current up step	current increment step size:			
1/1	smartchergy current up step	·			
		Scaling: 0 3: 1, 2, 4, 8 0: slow increment			
		3: fast increment / fast reaction to rising load			
		Sets the motor current which is used below the threshold			
183	smartEnergy slow run current	speed. Please adjust the threshold speed with axis parameter			
203	Sartz.rergy Stovy run current	182.			
		Sets the distance between the lower and the upper threshold			
170	smartEnergy hysteresis	for stallGuard2 reading. Above the upper threshold the motor			
	3, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	current becomes decreased.			
404	c	Below this speed motor will not be stopped. Above this speed			
181	Stop on stall	motor will stop in case stallGuard2 load value reaches zero.			
182	smartEnergy threshold speed	Above this speed coolStep becomes enabled.			
	3,	Standstill period before the current is changed down to			
214	Power down delay	standby current. The standard value is 200 (value equates			
	·	2000msec).			

5.3 Reference Search

The built-in reference search feature (instruction RFS, no. 13) offers switching point calibration and supports up-to two end *I* stop *I* limit switches and one home switch. Depending on the selected reference search mode (see table below), one of the limit switches or the home switch might be used as reference switch and the end *I* limit switches are either respected or ignored during the reference search. The internal operation is based on a state machine that can be started, stopped and monitored at any time during the reference search operation (instruction RFS, no. 13).

REMARKS ON REFERENCE SEARCH OPERATION:

- End / limit switches: enable / disable of the automatic stop function corresponding to the end / limit switches (axis parameters 12 and 13) has no influence on the reference search.
- Initial search speed: until the reference switch is found for the first time, the reference search speed specified by axis parameter 194 is used. (see figures below for more details)
- Search speed after reference switch has been triggered: As soon as the reference switch has been detected the motor will switch to the reference switch speed (axis parameter 195). (see figures below for more details)
- Search one of the end I stop I limit switches (from one side): when hitting the reference switch during movement, the motor stops and slowly moves backwards until the switch is released again. Motor stops again, reverses direction and slowly moves forward until the reference switch is triggered again. The reference point will be set to the center between release and trigger point of the reference switch on one side. With this mode the reference switch is not "overrun" instead the middle between the two transitions of the switch on one side open -> close and close -> open is used as reference.
- Search one of the end I stop I limit switches or the home switch from both sides: when hitting the reference switch during movement, the motor will continue moving until the switch is released again. Motor stops then, reverses direction and slowly moves forward until the switch is triggered again. The motor continues movement at low speed until the switch is released again, stops, reverses direction, moves towards the reference switch at low speed again until it is triggered again. It will then move to the middle of the switch between the two positions where the switch has been activated I triggered at low speed from both sides. With this mode the reference switch is "overrun" and the motor stops in the middle between activation of the switch from the left and the right side. This mode is usually used with the home switch.
- Using axis parameter 193 the reference search mode can be selected (see next chapter for more details on different reference search modes) before the actual reference search is started using the RFS command (command no. 13).
- End / limit / stop switches: With default configuration it is expected that both end / limit / stop switches are normally closed (N.C.) switches. These switches should be connected between the REF_L or REF_R input of one of the reference switch connectors 0..5 (depending on the desired motor axis) and ground (GND). With default configuration the inputs offer pull-up resistors to +5V. As soon as one of the switches is activated (open) the input level will go high due to the internal pull-ups. For other types of switches and / or other external connections this can be changed in software. Internal pull-ups can be deactivated using the command SIO 0, 0, 0 (for all axes please see SIO command for more details and different configuration options). This way a normally open (N.O.) switch may be connected between supply voltage (e.g. +24V) and the REF_L or REF_R input of one of the reference switch connectors 0..5 (depending on the desired motor axis). The input will be low as long as the switch is not activated and turning high as soon as the switch is activated. For other configurations it is also possible to invert the polarity of the input (see global parameter 79).
- Home switch: as general purpose inputs are used for home switch connection there are no internal pull-ups which can be switched on or off. For the standard reference search modes (see axis parameter 193 for more details) it is expected that a normally open (N.O.) switch is connected between e.g. +24V supply voltage and one of the general purpose inputs used as home switch input (IN_1 for motor 0, IN_2 for motor1, IN_3 for motor2, IN_5 for motor3, IN_6 for motor4 and IN_7 for motor5). In case a normally closed (N.C.) switch is used between home switch input and supply ground (as with the End / Limit / Stop switches) an external pull-up resistor e.g. to +24V should be added.

AXIS PARAMETERS RELATED TO REFERENCE SEARCH

Number	Axis Parameter	Description		
9	Reference switch status	The logical state of the home switch.		
10	Right limit switch status	The logical state of the right limit switch.		
11	Left limit switch status	The logical state of the left limit switch (in three switch mode)		
12	Right limit switch disable	If set, deactivates the stop function of the right switch (not applicable for the reference search algorithm)		
13	Left limit switch disable	If set, deactivates the stop function of the left switch (not applicable for the reference search algorithm)		
149	Soft stop flag	If cleared, the motor will stop immediately (disregarding motor limits), when the end <i>I</i> stop <i>I</i> limit switch is hit.		
193	Reference search mode	 search left stop switch only search right stop switch, then search left stop switch from both sides search left stop switch from both sides search home switch in negative direction, reverse the direction when left stop switch reached search home switch in positive direction, reverse the direction when right stop switch reached search home switch in negative direction, ignore end switches search home switch in negative direction, ignore end switches search home switch in positive direction, ignore end switches Add 128 to a mode value for inverting the home switch polarity (can be used with mode 5 8). Add 64 to a mode for exchanging left and right stop switches (can be used with mode 1 4). 		
194	Reference search	For the reference search this value directly specifies the search speed.		
195	Reference switch speed	Similar to parameter no. 194, the speed for the switching point calibration can be selected.		
196	Reference switch distance	This parameter provides the distance between the end switches after executing the RFS command (mode 2 or 3).		

5.3.1 Reference Search Modes (Axis Parameter 193)

The following figures explain the actual motor movement during the different reference search modes in more detail. A linear stage with two end points and a moving slider is taken as example.

SAP 193, 0, 1

Search left stop switch, only

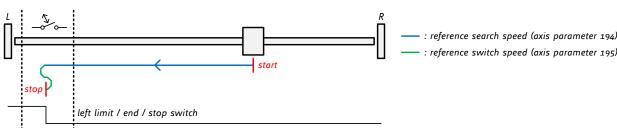


Figure 5.2: Search left stop switch, only

SAP 193, 0, 2

Search right stop switch, then search left stop switch

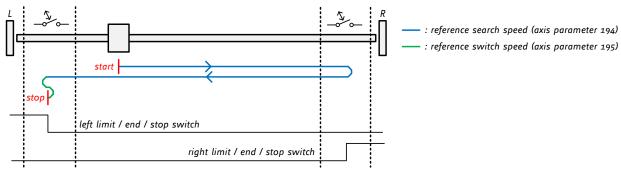


Figure 5.3: Search right stop switch, then search left stop switch

SAP 193, 0, 3

Search right stop switch, then search left stop switch from both sides

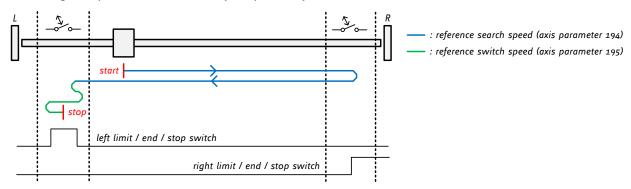


Figure 5.4: Search right stop switch, then search left stop switch from both sides

SAP 193, 0, 4

Search left stop switch from both sides

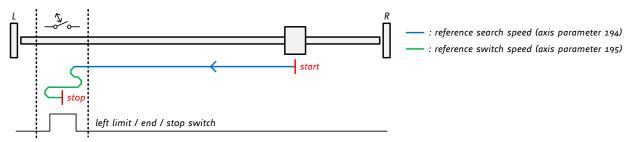


Figure 5.5: Search left stop switch from both sides

SAP 193, 0, 5

Search home switch in negative direction, reverse direction in case left stop switch is hit

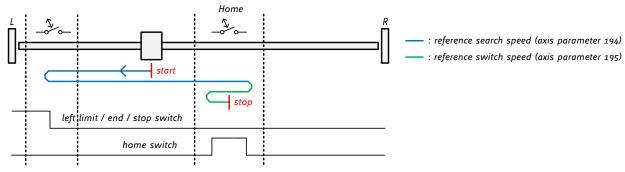


Figure 5.6: Search home switch in negative direction, reverse direction in case left stop switch is hit

SAP 193, 0, 6

Search home switch in positive direction, reverse direction in case right stop switch is hit

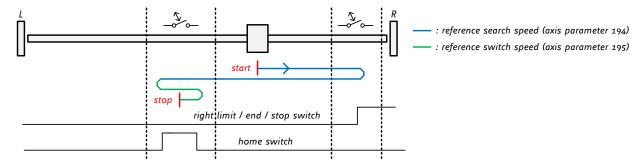


Figure 5.7: Search home switch in positive direction, reverse direction in case right stop switch is hit

SAP 193, 0, 7

Search home switch in negative direction, ignore end switches

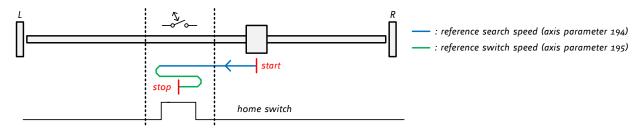


Figure 5.8: Search home switch in negative direction, ignore end switches

SAP 193, 0, 8

Search home switch in positive direction, ignore end switches

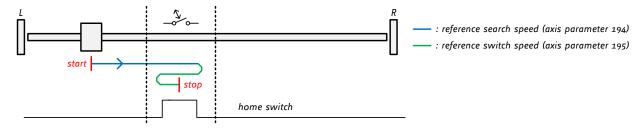


Figure 5.9: Search home switch in positive direction, ignore end switches

5.4 Grouping Motors

For grouping motors, a "group index" can be set for every motor using SAP 213. The following rules apply for the group index:

A motor that has a group index of 0 does not belong to any group at all

Motors that have the same group index belong to the same group

All motors that belong to one group must be controlled by the same TMCM-6110 module.

This method allows a great flexibility for grouping motors together. For example, it is possible to form two groups of three motors, or three groups of two motors, or one group of four motors or any other combinations.

For example, to form one group of motors 1, 3 and 5 and one group of motors 0 and 2 and motor 4 not belonging to any group, set the group indices of motor 1, 3, and 5 to 1, the group indices of motor 0 and 2 to 2 and the group index of motor 4 to 0 by issuing the following commands:

```
SAP 213, 1, 1
SAP 213, 3, 1
SAP 213, 5, 1
SAP 213, 0, 2
SAP 213, 2, 2
SAP 213, 4, 0
```

The groups are applied to the commands ROL, ROR, MST, MVP ABS and MVP REL. If one of these commands is issued for one motor that belongs to a group, all the other motors belonging to that group will also get the same command. In the current TMCL version (6.08), grouping does not apply to all the other commands. So, acceleration, velocity and other parameters have to be set separately for every motor. This might change in future versions.

The group settings also apply for deviation errors or motor stall: When a motor that belongs to a group is stopped because of a stall or a deviation error, all other motors belonging to this group will also be stopped.

To remove a motor from a group just set its group index to zero.

5.5 Calculation: Velocity and Acceleration vs. Microstep- and Fullstep-Frequency

The values of the axis parameters, sent to the TMC429 do not have typical motor values, like rotations per second as velocity. But these values can be calculated from the TMC429 parameters, as shown in this document.

TMC429 VELOCITY PARAMETERS

TMC429 velocity parameters		Related TMC	Range TMC429 and TMCM-6110	
Velocity	Axis pa	rameter 2	target (next) speed	0 2047
	Axis pa	rameter 3	actual speed	
	Axis pa	rameter 4	maximum positioning speed	
	Axis pa	rameter 13	minimum speed	
	Axis pa	rameter 194	referencing search speed	
	Axis pa	rameter 195	referencing switch speed	
a_max / maximum acceleration	Axis par	rameter 5		0 2047
μsrs /	Avis na	rameter 140 of	fers the following settings:	0 8
microstep resolution	ANIS Pai	uc.c. 140 01	icis the lottowing settings.	J J
microsteps per fullstep = $2^{\mu s r s}$	0	full step		
	1	half step		
	2	4 microsteps		
	3	8 microsteps		
	4	16 microstep		
	5	32 microstep		
	6	64 microstep	us s	
	7	128 microste	ps	
	8	256 microste	ps	
	Default:	8		
ramp_div /	Axis par	ameter 153: o	divider for the acceleration. The	0 13
ramp divisor	higher	the value is		
	accelerat	ion		
	Default:			
pulse_div /			vider for the velocity.	0 13
pulse divisor		_	y one divides velocity by two.	
		-	by one doubles velocity.	
	Default:	3		
f _{CLK} /				16MHz
clock frequency				

5.5.1 Microstep Frequency

The microstep frequency of the stepper motor is calculated with

$$\mu sf[Hz] = \frac{f_{CLK}[Hz] \cdot velocity}{2^{pulse_div} \cdot 2048.32}$$
 \(\mu sf: \text{ microstep-frequency}\)

5.5.2 Fullstep Frequency

To calculate the fullstep frequency from the microstep frequency, the microstep frequency must be divided by the number of microsteps per fullstep.

$$fsf[Hz] = \frac{\mu sf[Hz]}{2^{\mu srs}}$$
 fsf: fullstep-frequency

The change in the pulse rate per time unit (a: pulse frequency change per second) is given by

$$a = \frac{f_{CLK}^2 \cdot a_{\text{max}}}{2^{pulse_div+ramp_div+29}}$$

This results in acceleration in fullsteps of:

$$af = \frac{a}{2^{\mu s r s}}$$
 af: acceleration in fullsteps

Example:

Signal	Value
f_{CLK}	16 MHz
velocity	1000
a_max	1000
pulse_div	1
ramp_div	1
μsrs	6

$$fsf[Hz] = \frac{12207031}{2^6} = \underline{1907.34Hz}$$

$$a = \frac{(16Mhz)^2 \cdot 1000}{2^{1+1+29}} = 119.21 \frac{MHz}{s}$$

$$af = \frac{119.21 \frac{MHz}{s}}{2^6} = 1.863 \frac{MHz}{s}$$

5.5.2.1 Calculation of Number of Rotations:

A stepper motor has e.g. 72 fullsteps per rotation.

$$RPS = \frac{fsf}{full step sper rotation} = \frac{1907.34}{72} = 26.49$$

$$RPM = \frac{fsf \cdot 60}{full step sper rotation} = \frac{1907.34 \cdot 60}{72} = 1589.46$$

6 Global Parameters

GLOBAL PARAMETERS ARE GROUPED INTO 4 BANKS:

- bank 0 (global configuration of the module)
- bank 1 (user C variables)
- bank 2 (user TMCL variables)
- bank 3 (interrupt configuration)

Please use SGP and GGP commands to write and read global parameters.

6.1 Bank 0

PARAMETERS 0... 38

The first parameters 0... 38 are only mentioned here for completeness. They are used for the internal handling of the TMCL-IDE and serve for loading microstep and driver tables. Normally these parameters remain untouched.

If you want to use them for loading your specific values with your PC software please contact TRINAMIC and ask how to do this. Otherwise you might cause damage on the motor driver!

Number	Parameter
0	datagram low word (read only)
1	datagram high word (read only)
2	cover datagram position
3	cover datagram length
4	cover datagram contents
5	reference switch states (read only)
6	TMC429 SMGP register
7 22	driver chain configuration long words 0 15
23 38	microstep table long word 0 15

PARAMETERS 64... 132

Parameters with numbers from 64 on configure stuff like the serial address of the module RS485 baud rate or the CAN bit rate. Change these parameters to meet your needs. The best and easiest way to do this is to use the appropriate functions of the TMCL-IDE. The parameters with numbers between 64 and 128 are stored in EEPROM only.

An SGP command on such a parameter will always store it permanently and no extra STGP command is needed. Take care when changing these parameters, and use the appropriate functions of the TMCL-IDE to do it in an interactive way.

MEANING OF THE LETTERS IN COLUMN ACCESS:

Access	Related	Description
type	command(s)	
R	GGP	Parameter readable
W	SGP, AGP	Parameter writable
E	STGP, RSGP	Parameter stored permanently in EEPROM

Number	Global parameter	Description	Range	Acc.	
64	EEPROM magic	Setting this parameter to a different value as \$E4 will cause re-initialization of the axis and global parameters (to factory defaults) after the next power up. This is useful in case of miss-configuration.	0 255	RWE	
65	RS485 baud rate*)	0 9600 baud Default 1 14400 baud 2 2 19200 baud 3 3 28800 baud 4 5 57600 baud 5 6 76800 baud Not supported by Windows! 7 115200 baud Please note: values above 7 are not supported by the hardware!	0 11	RWE	
66	Serial address	The module RS485 (target) address (default: 1) Please note: address 0 has a special meaning. This address is accepted by all modules regardless of their particular address setting. Sending a command with this address might be useful in case a module has been set to an unknown address.	0 255	RWE	
67	ASCII mode	Configure the TMCL ASCII interface: Bit 0: 0 - start up in binary (normal) mode 1 - start up in ASCII mode Bits 4 and 5: 00 - echo back each character 01 - echo back complete command 10 - do not send echo, only send command reply		RWE	
68	Serial heartbeat	Serial heartbeat for the RS485 interface. If this time limit is reached and no further command received the motor will be stopped. O: parameter is disabled	[ms]	RWE	
69	CAN bit rate	2 20kBit/s 3 50kBit/s 4 100kBit/s 5 125kBit/s 6 250kBit/s 7 500kBit/s 8 1000kBit/s Default	2 8	RWE	
70	CAN reply ID	The CAN ID for replies from the board (default: 2)	0 7ff	RWE	
71	CAN ID	The module (target) address for CAN (default: 1)	0 7ff	RWE	
73	configuration EEPROM lock flag	Write: 1234 to lock the EEPROM, 4321 to unlock it. Read: 1=EEPROM locked, 0=EEPROM unlocked.			
75	Telegram pause time	Pause time before the reply via RS485 is sent. For RS485 it is often necessary to set it to 15 (for RS485 adapters controlled by the RTS pin). For CAN interface this parameter has no effect!	0 255	RWE	
76	Serial host address	Host address used in the reply telegrams sent back via RS485.	0 255	RWE	
77	Auto start mode	O: do not start TMCL application after power up (default). 1: start TMCL application automatically after power up.	0/1	RWE	

Number	Global parameter	Description	Range	Acc.
79	End switch polarity			RWE
		1 - reverse polarity motor axis 02, normal polarity		
		motor axis 35		
		2 - normal polarity motor axis 02, reverse polarity		
		motor axis 35		
		3 - reverse polarity motor axis 05		
81	TMCL code	Protect a TMCL program against disassembling or	0,1,2,3	RWE
	protection	overwriting.		
	·	0 – no protection		
		1 - protection against disassembling		
		2 – protection against overwriting		
		3 – protection against disassembling and		
		overwriting		
		If you switch off the protection against		
		disassembling, the program will be erased first!		
		Changing this value from 1 or 3 to 0 or 2, the TMCL		
		program will be wiped off.		
82	CAN heartbeat	Heartbeat for CAN interface. If this time limit is up	[ms]	RWE
-		and no further command is noticed the motor will	[]	
		be stopped.		
		0 - parameter is disabled		
83	CAN secondary	Second CAN ID for the module. Switched off when	0 7ff	RWE
	address	set to zero.	J 711	
84	Coordinate storage	0 - coordinates are stored in the RAM only (but can	0 or 1	RWE
04	coordinate storage	be copied explicitly between RAM and EEPROM)	0 01 1	
		1 – coordinates are always stored in the EEPROM		
		only		
87	Serial secondary	Second module RS485 (target) address. This is the	0 255	RWE
07	address	group or broadcast address of the module. Using	0 233	IXVVL
	addiess	this address a single command e.g. ROR or MVP sent		
		by the master is sufficient in order to initiate a		
		movement of several (group) or even all (broadcast)		
		modules connected to one bus. The first serial		
		address (66) might still be used to set parameters of		
		the modules individually.		
		In order to avoid bus collisions, the module will not		
		sent a reply for commands with this address.		
128	TMCL application	0 – stop	0 3	R
120	status	1 – run	0 5	
	Status	2 – step		
		3 – reset		
129	Download mode	0 – normal mode	0/1	R
11,	Downtoau moue	1 – download mode	"	``
130	TMCL program	The index of the currently executed TMCL instruction.		R
100	counter	The mack of the currently executed inici histiaction.		'
132	Tick timer	A 32 bit counter that gets incremented by one every	1	RW
176	TICK UITTEI			IVVV
133	Dandom number	millisecond. It can also be reset to any start value.	0	R
133	Random number Choose a random number.			K
			214748364	
255	Disable	1 marks disable d	7	1
255	Disable reply	1 - reply disabled	0/1	
		0 – send reply		

*) With most RS485 converters that can be attached to the COM port of a PC the data direction is controlled by the RTS pin of the COM port. Please note that this will only work with Windows 2000, Windows XP or Windows NT4, not with Windows 95, Windows 98 or Windows ME (due to a bug in these operating systems). Another problem is that Windows 2000/XP/NT4 switches the direction back

to receive too late. To overcome this problem, set the telegram pause time (global parameter #75) of the module to 15 (or more if needed) by issuing an SGP 75, 0, 15 command in direct mode. The parameter will automatically be stored in the configuration EEPROM.

6.2 Bank 1

The global parameter bank 1 is normally not available. It may be used for customer specific extensions of the firmware. Together with user definable functions (see section 4.6.36) these variables form the interface between extensions of the firmware (written in C) and TMCL applications.

6.3 Bank 2

Bank 2 contains general purpose 32 bit variables for the use in TMCL applications. They are located in RAM and can be stored to EEPROM. After booting, their values are automatically restored to the RAM.

Up to 56 user variables are available.

MEANING OF THE LETTERS IN COLUMN ACCESS:

Access	Related	Description				
type	command(s)					
R	GGP	Parameter readable				
W	SGP, AGP	Parameter writable				
E	STGP, RSGP	Parameter stored permanently in EEPROM				

Number	Global parameter	Description	Range	Access
0 55	general purpose variable #0 #55	for use in TMCL applications	-2 ³¹ +2 ³¹	RWE
56 255	general purpose variables #56 #255	for use in TMCL applications	-2 ³¹ +2 ³¹	RW

6.4 Bank 3

Bank 3 contains interrupt parameters. Some interrupts need configuration (e.g. the timer interval of a timer interrupt). This can be done using the SGP commands with parameter bank 3 (SGP <type>, 3, <value>). The priority of an interrupt depends on its number. Interrupts with a lower number have a higher priority.

The following table shows all interrupt parameters that can be set.

MEANING OF THE LETTERS IN COLUMN ACCESS:

Access	Related command	Description
type		
R	GGP	Parameter readable
W	SGP, AGP	Parameter writable
E	SGP, AGP	Parameter stored permanently in EEPROM

Number	Global parameter	Description	Range	Access
0	Timer 0 period (ms)	Time between two interrupts (ms)	32 bit unsigned [ms]	RWE
1	Timer 1 period (ms)	Time between two interrupts (ms)	32 bit unsigned [ms]	RWE
2	Timer 2 period (ms)	Time between two interrupts (ms)	32 bit unsigned [ms]	RWE
27	Stop left 0 trigger	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
	transition			
28	Stop right 0 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
29	Stop left 1 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
30	Stop right 1 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
31	Stop left 2 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
32	Stop right 2 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
33	Stop left 3 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
34	Stop right 3 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
35	Stop left 4 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
36	Stop right 4 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
37	Stop left 5 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
38	Stop right 5 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
39	Input 0 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
40	Input 1 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
41	Input 2 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
42	Input 3 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE
43	Input 4 trigger transition	0=off, 1=low-high, 2=high-low, 3=both 0 3		RWE
44	Input 5 trigger transition	0=off, 1=low-high, 2=high-low, 3=both 0 3		RWE
45	Input 6 trigger transition	0=off, 1=low-high, 2=high-low, 3=both 0 3		RWE
46	Input 7 trigger transition	0=off, 1=low-high, 2=high-low, 3=both	0 3	RWE

7 TMCL Programming Techniques and Structure

7.1 Initialization

The first task in a TMCL program (like in other programs also) is to initialize all parameters where different values than the default values are necessary. For this purpose, SAP and SGP commands are used.

7.2 Main Loop

Embedded systems normally use a main loop that runs infinitely. This is also the case in a TMCL application that is running stand alone. Normally, the auto start mode of the module should be turned on. After power up, the module starts the TMCL program, which first does all necessary initializations and then enters the main loop, which does all necessary tasks end never ends (only when the module is powered off or reset).

There are exceptions to this, e.g. when TMCL routines are called from a host in direct mode.

So most (but not all) standalone TMCL programs look like this:

7.3 Using Symbolic Constants

To make your program better readable and understandable, symbolic constants should be taken for all important numerical values that are used. The TMCL-IDE provides an include file with symbolic names for all important axis parameters and global parameters.

EXAMPLE:

Just have a look at the file TMCLParam.tmc provided with the TMCL-IDE. It contains symbolic constants that define all important parameter numbers.

Using constants for other values makes it easier to change them when they are used more than once in a program. You can change the definition of the constant and do not have to change all occurrences of it in your program.

7.4 Using Variables

User variables can be used if variables are needed in your program. They can store temporary values. The commands SGP, GGP and AGP are used to work with user variables:

SGP is used to set a variable to a constant value (e.g. during initialization phase).

GGP is used to read the contents of a user variable and to copy it to the accumulator register for further usage.

AGP can be used to copy the contents of the accumulator register to a user variable, e.g. to store the result of a calculation.

EXAMPLE

```
MyVariable = 42

//Use a symbolic name for the user variable

//(This makes the program better readable and understandable.)

SGP MyVariable, 2, 1234

//Initialize the variable with the value 1234

...

GGP MyVariable, 2

//Copy the contents of the variable to the accumulator register

CALC MUL, 2

//Multiply accumulator register with two

AAP MyVariable, 2

//Store contents of the accumulator register to the variable

...
```

Furthermore, these variables can provide a powerful way of communication between a TMCL program running on a module and a host. The host can change a variable by issuing a direct mode SGP command (remember that while a TMCL program is running direct mode commands can still be executed, without interfering with the running program). If the TMCL program polls this variable regularly it can react on such changes of its contents.

The host can also poll a variable using GGP in direct mode and see if it has been changed by the TMCL program.

7.5 Using Subroutines

The CSUB and RSUB commands provide a mechanism for using subroutines. The CSUB command branches to the given label. When an RSUB command is executed the control goes back to the command that follows the CSUB command that called the subroutine.

This mechanism can also be nested. From a subroutine called by a CSUB command other subroutines can be called. In the current version of TMCL eight levels of nested subroutine calls are allowed.

7.6 Mixing Direct Mode and Standalone Mode

Direct mode and stand alone mode can also be mixed. When a TMCL program is being executed in standalone mode, direct mode commands are also processed (and they do not disturb the flow of the program running in standalone mode). So, it is also possible to query e.g. the actual position of the motor in direct mode while a TMCL program is running.

Communication between a program running in standalone mode and a host can be done using the TMCL user variables. The host can then change the value of a user variable (using a direct mode SGP command) which is regularly polled by the TMCL program (e.g. in its main loop) and so the TMCL program can react on such changes. Vice versa, a TMCL program can change a user variable that is polled by the host (using a direct mode GGP command).

A TMCL program can be started by the host using the run command in direct mode. This way, also a set of TMCL routines can be defined that are called by a host. In this case it is recommended to place JA commands at the beginning of the TMCL program that jump to the specific routines. This assures that the entry addresses of the routines will not change even when the TMCL routines are changed (so when changing the TMCL routines the host program does not have to be changed).

EXAMPLE

```
//Jump commands to the TMCL routines
           JA Func1Start
Func2:
           JA Func2Start
Func3:
           JA Func3Start
Func1Start: MVP ABS, 0, 1000
            WAIT POS, 0, 0
            MVP ABS, 0, 0
            WAIT POS, 0, 0
            STOP
Func2Start: ROL 0, 500
            WAIT TICKS, 0, 100
            MST 0
            STOP
Func3Start:
            ROR 0, 1000
            WAIT TICKS, 0, 700
            MST 0
            STOP
```

This example provides three very simple TMCL routines. They can be called from a host by issuing a run command with address 0 to call the first function, or a run command with address 1 to call the second function, or a run command with address 2 to call the third function. You can see the addresses of the TMCL labels (that are needed for the run commands) by using the *generate symbol file* function of the TMCL-IDE.

Please refer to the TMCL-IDE User Manual for further information about the TMCL-IDE.

8 Life Support Policy

TRINAMIC Motion Control GmbH & Co. KG does not authorize or warrant any of its products for use in life support systems, without the specific written consent of TRINAMIC Motion Control GmbH & Co. KG.

Life support systems are equipment intended to support or sustain life, and whose failure to perform, when properly used in accordance with instructions provided, can be reasonably expected to result in personal injury or death.

© TRINAMIC Motion Control GmbH & Co. KG 2011 - 2014

Information given in this data sheet is believed to be accurate and reliable. However neither responsibility is assumed for the consequences of its use nor for any infringement of patents or other rights of third parties, which may result from its use.

Specifications are subject to change without notice.

All trademarks used are property of their respective owners.

9 Revision History

9.1 Firmware Revision

Version	Date	Author	Description	
1.10	2011-AUG-22	OK	First version supporting all features	
1.11	2011-SEP-05	OK	WAIT command updated. Inverting home switch during	
			reference search corrected.	
1.12	2011-DEC-20	OK	STAP/RSAP 140 corrected.	
1.13	2012-JAN-17	OK	Adjustments related to hardware version 1.2. Full functionality	
			preserved with hardware version 1.1.	
			USB bus powered operation: abandonment of TMCL-program	
			(resp. no automatic start) in case of undervoltage. If the voltage	
			is sufficient: re-initialization resp. auto start.	
			Parameter 200 (boost current) new.	
1.14	2012-FEB-29	OK	coolStep updated.	
			Positioning range enlarged: 32 Bit.	
			Pin change interrupts for additional I/Os added.	
			Heartbeat function added.	
1.15	2012-MAR-12	OK	Global parameter 133 (random number) new.	
1.16	2012-MAR-28	OK	Global parameter 84 (coordinate storage) new.	
1.17	2012-APR-26	OK	Automatic current reduction (axis 3-5) updated.	
1.18	2012-JUN-18	OK	GIO 255,2 und SIO 255, 2, x implementiert.	
1.19	2012-JUN-26	OK	Reference switch inputs can be inverted.	
1.20	2012-OKT-04	OK	Global parameter 87 (secondary address for RS232/RS485)	
			added.	
			Reference search: the last position before setting the counter to	
			zero can be read out with axis parameter 197.	
1.21	2012-NOV-16	OK	Axis parameter 130 (min. current) updated.	
1.22	2013-FEB-20	OK	Axis parameter 193 updated.	
1.23-1.28	2014-FEB-28	OK	Not deployed.	
1.29, 1.30	2014-APR-23	OK	Not deployed.	
1.31	2014-APR-23	OK	Improved command request target position reached.	

9.2 Document Revision

Version	Date	Author	Description		
0.90	2011-AUG-24	SD	Preliminary version		
1.00	2011-SEP-12	SD	 Start up new. Axis parameter commands actualized. New subchapters for special axis parameters added. Chapter with TMCL programming techniques added. 		
1.01	2011-NOV-10	SD	 Information about USB interface corrected (3.1.1.2.2) TMCL control function 137 (restore to factory defaults, 4.6.39) added. 		
1.02	2011-NOV-14	SD	SD Information about dip switch (3.1.1.2.3) added.		
1.03	2012-JUL-31	SD Design changes			
1.04	2012-DEC-19	SD	Interrupts corrected. SD Global parameter 87 added. Design changes.		
1.05	2013-JUL-22	SD	Connector types updated and pinning added.		
1.06	2014-FEB-24	SD	 Axis parameter 9 corrected. Examples for MVP COORD added. Information about grouping motors added. 		
1.07	2014-MAY-16	SD	Axis parameter 193 (reference search modes) updated.Firmware Revision updated.		

Version	Date	Author	Description
1.08	2014-DEC-10	GE	 Chapter 5.3 Reference Search corrected and updated. Several minor additions for clarification
1.09	2015-FEB-24	GE	- Chapter 5.5, description and default values for axis parameter pulse_div und ramp_div corrected.

10 References

[TMCM-6110] TMCM-6110 Hardware Manual

[TMC260]TMC260 Datasheet[TMC429]TMC429 Datasheet[TMCL-IDE]TMCL-IDE User Manual

Please refer to www.trinamic.com.